Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add inference example and unit-test for fit-a-line book chapter #8208

Merged
merged 7 commits into from
Feb 9, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/inference/tests/book/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ function(inference_test TARGET_NAME)
endforeach()
endfunction(inference_test)

inference_test(fit_a_line)
inference_test(recognize_digits ARGS mlp)
inference_test(image_classification ARGS vgg resnet)
inference_test(label_semantic_roles)
Expand Down
57 changes: 57 additions & 0 deletions paddle/inference/tests/book/test_inference_fit_a_line.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "test_helper.h"

DEFINE_string(dirname, "", "Directory of the inference model.");

TEST(inference, fit_a_line) {
if (FLAGS_dirname.empty()) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
}

LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
std::string dirname = FLAGS_dirname;

// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc

paddle::framework::LoDTensor input;
// The second dim of the input tensor should be 13
// The input data should be >= 0
int64_t batch_size = 10;
SetupTensor<float>(
input, {batch_size, 13}, static_cast<float>(0), static_cast<float>(10));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input);

paddle::framework::LoDTensor output1;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
cpu_fetchs1.push_back(&output1);

// Run inference on CPU
TestInference<paddle::platform::CPUPlace>(dirname, cpu_feeds, cpu_fetchs1);
LOG(INFO) << output1.dims();

#ifdef PADDLE_WITH_CUDA
paddle::framework::LoDTensor output2;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
cpu_fetchs2.push_back(&output2);

// Run inference on CUDA GPU
TestInference<paddle::platform::CUDAPlace>(dirname, cpu_feeds, cpu_fetchs2);
LOG(INFO) << output2.dims();

CheckError<float>(output1, output2);
#endif
}
48 changes: 42 additions & 6 deletions python/paddle/v2/fluid/tests/book/test_fit_a_line.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,15 +15,13 @@
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import contextlib
import numpy
import unittest
import math
import sys


def main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return

def train(use_cuda, save_dirname):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')

y_predict = fluid.layers.fc(input=x, size=1, act=None)
Expand Down Expand Up @@ -51,21 +49,59 @@ def main(use_cuda):

PASS_NUM = 100
for pass_id in range(PASS_NUM):
fluid.io.save_persistables(exe, "./fit_a_line.model/")
fluid.io.load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
avg_loss_value, = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
print(avg_loss_value)
if avg_loss_value[0] < 10.0:
if save_dirname is not None:
fluid.io.save_inference_model(save_dirname, ['x'],
[y_predict], exe)
return
if math.isnan(float(avg_loss_value)):
sys.exit("got NaN loss, training failed.")
raise AssertionError("Fit a line cost is too large, {0:2.2}".format(
avg_loss_value[0]))


def infer(use_cuda, save_dirname=None):
if save_dirname is None:
return

place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)

# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

# The input's dimension should be 2-D and the second dim is 13
# The input data should be >= 0
batch_size = 10
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
assert feed_target_names[0] == 'x'
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_x},
fetch_list=fetch_targets)
print("infer shape: ", results[0].shape)
print("infer results: ", results[0])


def main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return

# Directory for saving the trained model
save_dirname = "fit_a_line.inference.model"

train(use_cuda, save_dirname)
infer(use_cuda, save_dirname)


class TestFitALine(unittest.TestCase):
def test_cpu(self):
with self.program_scope_guard():
Expand Down