Skip to content

Commit

Permalink
Merge pull request #912 from yeliang2258/argminmax_attr_dev
Browse files Browse the repository at this point in the history
Add tensor attr support for argmin and argmax
  • Loading branch information
yeliang2258 authored Sep 27, 2022
2 parents feb4ea4 + f3d0a57 commit 10d414f
Show file tree
Hide file tree
Showing 5 changed files with 164 additions and 4 deletions.
26 changes: 25 additions & 1 deletion paddle2onnx/mapper/tensor/argmax.cc
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,17 @@
namespace paddle2onnx {
REGISTER_MAPPER(arg_max, ArgMaxMapper)

int32_t ArgMaxMapper::GetMinOpset(bool verbose) {
if (IsAttrVar("axis") && !IsConstant(GetAttrVar("axis")[0])) {
Error() << "While Attribute(axis)'s type is Tensor, it's not "
"supported "
"unless it's a constant tensor."
<< std::endl;
return -1;
}
return 7;
}

void ArgMaxMapper::Opset7() {
auto input_info = parser_->GetOpInput(block_idx_, op_idx_, "X");
auto output_info = parser_->GetOpOutput(block_idx_, op_idx_, "Out");
Expand All @@ -32,7 +43,20 @@ void ArgMaxMapper::Opset7() {
need_unsqueeze = true;
}
}

if (IsAttrVar("axis")) {
auto axis_info = GetAttrVar("axis");
std::vector<int64_t> temp;
TryGetValue(axis_info[0], &temp);
axis_ = temp[0];
} else {
GetAttr("axis", &axis_);
}
if (input_info[0].dtype == P2ODataType::FP64) {
input = helper_->AutoCast(input, P2ODataType::FP64, P2ODataType::FP32);
}
if (input_info[0].dtype == P2ODataType::INT64) {
input = helper_->AutoCast(input, P2ODataType::INT64, P2ODataType::INT32);
}
auto arg_node = helper_->MakeNode("ArgMax", {input});
AddAttribute(arg_node, "axis", axis_);
AddAttribute(arg_node, "keepdims", static_cast<int64_t>(keepdims_));
Expand Down
2 changes: 1 addition & 1 deletion paddle2onnx/mapper/tensor/argmax.h
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -27,9 +27,9 @@ class ArgMaxMapper : public Mapper {
: Mapper(p, helper, block_id, op_id) {
GetAttr("flatten", &flatten_);
GetAttr("keepdims", &keepdims_);
GetAttr("axis", &axis_);
GetAttr("dtype", &dtype_);
}
int32_t GetMinOpset(bool verbose = false);
void Opset7();

private:
Expand Down
26 changes: 25 additions & 1 deletion paddle2onnx/mapper/tensor/argmin.cc
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,17 @@
namespace paddle2onnx {
REGISTER_MAPPER(arg_min, ArgMinMapper)

int32_t ArgMinMapper::GetMinOpset(bool verbose) {
if (IsAttrVar("axis") && !IsConstant(GetAttrVar("axis")[0])) {
Error() << "While Attribute(axis)'s type is Tensor, it's not "
"supported "
"unless it's a constant tensor."
<< std::endl;
return -1;
}
return 7;
}

void ArgMinMapper::Opset7() {
auto input_info = GetInput("X");
auto output_info = GetOutput("Out");
Expand All @@ -32,7 +43,20 @@ void ArgMinMapper::Opset7() {
need_unsqueeze = true;
}
}

if (IsAttrVar("axis")) {
auto axis_info = GetAttrVar("axis");
std::vector<int64_t> temp;
TryGetValue(axis_info[0], &temp);
axis_ = temp[0];
} else {
GetAttr("axis", &axis_);
}
if (input_info[0].dtype == P2ODataType::FP64) {
input = helper_->AutoCast(input, P2ODataType::FP64, P2ODataType::FP32);
}
if (input_info[0].dtype == P2ODataType::INT64) {
input = helper_->AutoCast(input, P2ODataType::INT64, P2ODataType::INT32);
}
auto arg_node = helper_->MakeNode("ArgMin", {input});
AddAttribute(arg_node, "axis", axis_);
AddAttribute(arg_node, "keepdims", static_cast<int64_t>(keepdims_));
Expand Down
2 changes: 1 addition & 1 deletion paddle2onnx/mapper/tensor/argmin.h
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -27,9 +27,9 @@ class ArgMinMapper : public Mapper {
: Mapper(p, helper, block_id, op_id) {
GetAttr("flatten", &flatten_);
GetAttr("keepdims", &keepdims_);
GetAttr("axis", &axis_);
GetAttr("dtype", &dtype_);
}
int32_t GetMinOpset(bool verbose = false);
void Opset7();

private:
Expand Down
112 changes: 112 additions & 0 deletions tests/test_auto_scan_argminmax.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from auto_scan_test import OPConvertAutoScanTest, BaseNet
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
import paddle
import random

op_api_map = {
"arg_min": paddle.argmin,
"arg_max": paddle.argmax,
}

opset_version_map = {
"arg_min": [7, 9, 15],
"arg_max": [7, 9, 15],
}


class Net(BaseNet):
"""
simple Net
"""

def forward(self, inputs):
"""
forward
"""
if self.config["tensor_attr"]:
axis = paddle.assign(self.config["axis"])
else:
axis = self.config["axis"]
x = op_api_map[self.config["op_names"]](inputs,
axis=axis,
keepdim=self.config["keep_dim"],
dtype=self.config["out_dtype"])
return x


class TestArgMinMaxConvert(OPConvertAutoScanTest):
"""
api: paddle.argmin/argmax
OPset version: 7, 9, 15
"""

def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=2, max_value=10), min_size=2, max_size=4))

input_spec = [-1] * len(input_shape)

dtype = draw(st.sampled_from(["float32", "float64", "int32", "int64"]))

axis = draw(
st.integers(
min_value=-len(input_shape), max_value=len(input_shape) - 1))

keep_dim = draw(st.booleans())

out_dtype = draw(st.sampled_from(["int32", "int64"]))

tensor_attr = draw(st.booleans())

config = {
"op_names": ["reduce_max"],
"test_data_shapes": [input_shape],
"test_data_types": [[dtype]],
"opset_version": [7, 9, 15],
"axis": axis,
"out_dtype": out_dtype,
"keep_dim": keep_dim,
"tensor_attr": tensor_attr,
"input_spec_shape": [],
"delta": 1e-4,
"rtol": 1e-4
}

models = list()
op_names = list()
opset_versions = list()
for op_name, i in op_api_map.items():
config["op_names"] = op_name
models.append(Net(config))
op_names.append(op_name)
opset_versions.append(opset_version_map[op_name])
config["op_names"] = op_names
config["opset_version"] = opset_versions

return (config, models)

def test(self):
self.run_and_statis(max_examples=30, max_duration=-1)


if __name__ == "__main__":
unittest.main()

0 comments on commit 10d414f

Please sign in to comment.