Drug combinations, also known as combinatorial therapy, are frequently prescribed to treat patients with complex disease. Graph convolutional network(GCN) can be used to predict drug-drug synergy by intergrating multiple biological networks.
Drug-drug synergy information and drug physi-chemical features can be put under data
folder.
mkdir data && cd data && mkdir DDI && wget "http://www.bioinf.jku.at/software/DeepSynergy/labels.csv"
cd data && wget "https://baidu-nlp.bj.bcebos.com/PaddleHelix/datasets/drug_synergy_datasets/dti.tgz" && tar xzvf dti.tgz
cd data && wget "https://baidu-nlp.bj.bcebos.com/PaddleHelix/datasets/drug_synergy_datasets/ppi.tgz" && tar xzvf ppi.tgz
cd data && wget "https://baidu-nlp.bj.bcebos.com/PaddleHelix/datasets/drug_synergy_datasets/drug_feat.tgz" && tar xzvf drug_feat.tgz
For illustration, we provide a python script train.py
.
Its usage is:
CUDA_VISIBLE_DEVICES=0 python3 train.py
--ddi ./data/DDI/DDs.csv
--dti ./data/DTI/drug_protein_links.tsv
--ppi ./data/PPI/protein_protein_links.txt
--d_feat ./data/all_drugs_name.fet
--epochs 10
--num_graph 10
--sub_neighbours 10 10
--cuda
Notice that if you only have CPU machine, just remove --cuda
.
RGCN
@article{jiang2020deep, title={Deep graph embedding for prioritizing synergistic anticancer drug combinations}, author={Jiang, Peiran and Huang, Shujun and Fu, Zhenyuan and Sun, Zexuan and Lakowski, Ted M and Hu, Pingzhao}, journal={Computational and structural biotechnology journal}, volume={18}, pages={427--438}, year={2020}, publisher={Elsevier} }