Skip to content

Commit

Permalink
Add Checkpoint Merger Pipeline (#485)
Browse files Browse the repository at this point in the history
#271 Checkpoint Merger
生成结果对齐:
CompVis/stable-diffusion-v1-4 + runwayml/stable-diffusion-v1-5
## torch

![CompVis_runwayml_1](https://github.com/PaddlePaddle/PaddleMIX/assets/93063038/1b090fbc-4300-490a-b551-3b629bc17f9a)
代码如下:
```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="checkpoint_merger",
)

merged_pipe = pipe.merge(
    ["CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5"],
    interp="sigmoid",
    alpha=0.4,
)

prompt = "An astronaut riding a horse on Mars"
merged_pipe.to("cuda")

image = merged_pipe(prompt, generator=torch.Generator("cuda").manual_seed(102)).images[0]
image.save("CompVis_runwayml.jpg")
```
## paddle

![CompVis_runwayml](https://github.com/PaddlePaddle/PaddleMIX/assets/93063038/d3059125-b7a4-4506-8516-1407c14cde10)
代码如下:
```python
from ppdiffusers import DiffusionPipeline
import paddle

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="/home/onion/workspace/code/pp/PaddleMIX/ppdiffusers/examples/community/checkpoint_merger",
)

merged_pipe = pipe.merge(
    ["CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5"],
    interp="sigmoid",
    alpha=0.4,
)

prompt = "An astronaut riding a horse on Mars"

image = merged_pipe(prompt, generator=paddle.Generator("cuda").manual_seed(102)).images[0]
image.save("CompVis_runwayml.jpg")
```
结果一致
  • Loading branch information
InsaneOnion authored Mar 27, 2024
1 parent ec58673 commit ab37bfa
Show file tree
Hide file tree
Showing 2 changed files with 388 additions and 0 deletions.
65 changes: 65 additions & 0 deletions ppdiffusers/examples/community/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
|EDICT Image Editing Pipeline| 一个用于文本引导的图像编辑的 Stable Diffusion Pipeline|[EDICT Image Editing Pipeline](#edict_pipeline)||
|FABRIC - Stable Diffusion with feedback Pipeline| 一个用于喜欢图片和不喜欢图片的反馈 Pipeline|[FABRIC - Stable Diffusion with feedback Pipeline](#fabric_pipeline)||
|Stable Diffusion XL Long Weighted Prompt Pipeline| 一个不限制 prompt 长度的 Pipeline|[Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline)||
|Checkpoint Merger Pipeline|一个支持合并模型checkpoints的Diffusion Pipeline|[Checkpoint Merger Pipeline](#checkpoint-merger-pipeline)||

## Example usages

Expand Down Expand Up @@ -892,3 +893,67 @@ images.save("out.png")

生成的图片如下所示:
<center><img src="https://github.com/PaddlePaddle/PaddleMIX/assets/4617245/938e44c1-a0c1-4a34-8496-f63bc1592673" width=100%></center>

### Checkpoint Merger Pipeline

一个支持合并模型checkpoints的Diffusion Pipeline,使用方式如下所示:

``` python
from ppdiffusers import DiffusionPipeline

# Return a CheckpointMergerPipeline class that allows you to merge checkpoints.
# The checkpoint passed here is ignored. But still pass one of the checkpoints you plan to
# merge for convenience
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="checkpoint_merger",
)

# There are multiple possible scenarios:
# The pipeline with the merged checkpoints is returned in all the scenarios

# Compatible checkpoints a.k.a matched model_index.json files. Ignores the meta attributes in model_index.json during comparison.( attrs with _ as prefix )
merged_pipe = pipe.merge(
["CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5"],
interp="sigmoid",
alpha=0.4,
)

# Incompatible checkpoints in model_index.json but merge might be possible. Use force = True to ignore model_index.json compatibility
merged_pipe_1 = pipe.merge(
["CompVis/stable-diffusion-v1-4", "prompthero/openjourney"],
force=True,
interp="sigmoid",
alpha=0.4,
)

# Three checkpoint merging. Only "add_difference" method actually works on all three checkpoints. Using any other options will ignore the 3rd checkpoint.
merged_pipe_2 = pipe.merge(
[
"CompVis/stable-diffusion-v1-4",
"runwayml/stable-diffusion-v1-5",
"prompthero/openjourney",
],
force=True,
interp="add_difference",
alpha=0.4,
)

prompt = "An astronaut riding a horse on Mars"

image = merged_pipe(prompt).images[0]
image.save("CompVis_runwayml.jpg")
image = merged_pipe_1(prompt).images[0]
image.save("CompVis_prompthero.jpg")
image = merged_pipe_2(prompt).images[0]
image.save("CompVis_runwayml_prompthero.jpg")
```

一些示例图片以及合并详细信息如下:

1. "CompVis/stable-diffusion-v1-4" + "runwayml/stable-diffusion-v1-5" ; Sigmoid interpolation; alpha = 0.4
<center><img src="https://github.com/PaddlePaddle/PaddleMIX/assets/93063038/12d5a600-0024-4306-b611-cc7a5ec48fef" width=100%></center>
2. "CompVis/stable-diffusion-v1-4" + "prompthero/openjourney" ; Sigmoid interpolation; alpha = 0.4
<center><img src="https://github.com/PaddlePaddle/PaddleMIX/assets/93063038/87452dfe-b6ac-49ed-badc-30880de7e693" width=100%></center>
3. "CompVis/stable-diffusion-v1-4" + "runwayml/stable-diffusion-v1-5" + "prompthero/openjourney" ; Add Difference interpolation; alpha = 0.4
<center><img src="https://github.com/PaddlePaddle/PaddleMIX/assets/93063038/a23418c2-3c25-40f4-8c67-ac8c0277b9f5" width=100%></center>
323 changes: 323 additions & 0 deletions ppdiffusers/examples/community/checkpoint_merger.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,323 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import glob
import os
from typing import Dict, List, Union

import paddle
import safetensors.paddle

from ppdiffusers import DiffusionPipeline
from ppdiffusers.utils import (
DIFFUSERS_CACHE,
FROM_AISTUDIO,
FROM_HF_HUB,
PPDIFFUSERS_CACHE,
)


class CheckpointMergerPipeline(DiffusionPipeline):
"""
A class that supports merging diffusion models based on the discussion here:
https://github.com/huggingface/diffusers/issues/877
Example usage:-
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py")
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True)
merged_pipe.to('cuda')
prompt = "An astronaut riding a unicycle on Mars"
results = merged_pipe(prompt)
## For more details, see the docstring for the merge method.
"""

def __init__(self):
self.register_to_config()
super().__init__()

def _convert_dict(self, ori_dict):
del_flag = False
for key, value in ori_dict.items():
if isinstance(value, list):
for item in value:
if item in ["ppdiffusers", "ppdiffusers.transformers"]:
ori_dict[key] = item
elif item == "diffusers" or item == "diffusers_paddle":
ori_dict[key] = "ppdiffusers"
elif item == "transformers" or item == "paddlenlp.transformers":
ori_dict[key] = "ppdiffusers.transformers"
if key == "requires_safety_checker":
del_flag = True
if del_flag:
del ori_dict["requires_safety_checker"]
return ori_dict

def _compare_model_configs(self, dict0, dict1):
print(dict0)
print(dict1)
if dict0 == dict1:
return True
else:
config0, meta_keys0 = self._remove_meta_keys(dict0)
config1, meta_keys1 = self._remove_meta_keys(dict1)
if config0 == config1:
print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.")
return True
return False

def _remove_meta_keys(self, config_dict: Dict):
meta_keys = []
temp_dict = config_dict.copy()
for key in config_dict.keys():
if key.startswith("_"):
temp_dict.pop(key)
meta_keys.append(key)
return (temp_dict, meta_keys)

@paddle.no_grad()
def merge(
self,
pretrained_model_name_or_path_list: List[Union[str, os.PathLike]],
**kwargs,
):
"""
Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed
in the argument 'pretrained_model_name_or_path_list' as a list.
Parameters:
-----------
pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format.
**kwargs:
Supports all the default DiffusionPipeline.get_config_dict kwargs viz..
cache_dir, resume_download, force_download, proxies, local_files_only, token, revision, paddle_dtype, device_map.
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_diff" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_diff" is supported.
force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
variant - which variant of a pretrained model to load, e.g. "fp16" (None)
"""
# Default kwargs from DiffusionPipeline
from_hf_hub = kwargs.pop("from_hf_hub", FROM_HF_HUB)
from_aistudio = kwargs.pop("from_aistudio", FROM_AISTUDIO)
cache_dir = kwargs.pop("cache_dir", None)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
token = kwargs.pop("token", None)
variant = kwargs.pop("variant", None)
revision = kwargs.pop("revision", None)
paddle_dtype = kwargs.pop("paddle_dtype", None)
device_map = kwargs.pop("device_map", None)

alpha = kwargs.pop("alpha", 0.5)
interp = kwargs.pop("interp", None)

print("Received list", pretrained_model_name_or_path_list)
print(f"Combining with alpha={alpha}, interpolation mode={interp}")

checkpoint_count = len(pretrained_model_name_or_path_list)
# Ignore result from model_index_json comparision of the two checkpoints
force = kwargs.pop("force", False)

# If less than 2 checkpoints, nothing to merge. If more than 3, not supported for now.
if checkpoint_count > 3 or checkpoint_count < 2:
raise ValueError(
"Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being"
" passed."
)

print("Received the right number of checkpoints")
# chkpt0, chkpt1 = pretrained_model_name_or_path_list[0:2]
# chkpt2 = pretrained_model_name_or_path_list[2] if checkpoint_count == 3 else None

# Validate that the checkpoints can be merged
# Step 1: Load the model config and compare the checkpoints. We'll compare the model_index.json first while ignoring the keys starting with '_'
config_dicts = []
for pretrained_model_name_or_path in pretrained_model_name_or_path_list:
config_dict = DiffusionPipeline.load_config(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
)
config_dict = self._convert_dict(config_dict)
config_dicts.append(config_dict)

comparison_result = True
for idx in range(1, len(config_dicts)):
comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx])
if not force and comparison_result is False:
raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.")
print("Compatible model_index.json files found")
# Step 2: Basic Validation has succeeded. Let's download the models and save them into our local files.
cached_folders = []
for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts):
if os.path.isdir(pretrained_model_name_or_path):
cached_folder = pretrained_model_name_or_path
else:
DiffusionPipeline.from_pretrained(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=True,
proxies=proxies,
local_files_only=local_files_only,
revision=revision,
safety_checker=None,
use_safetensors=True,
)
if from_aistudio:
cached_folder = None # TODO, check aistudio cache
elif from_hf_hub:
cached_folder = os.path.join(DIFFUSERS_CACHE, pretrained_model_name_or_path)
else:
cached_folder = os.path.join(PPDIFFUSERS_CACHE, pretrained_model_name_or_path)

print("Cached Folder", cached_folder)
cached_folders.append(cached_folder)

# Step 3:-
# Load the first checkpoint as a diffusion pipeline and modify its module state_dict in place
final_pipe = DiffusionPipeline.from_pretrained(
cached_folders[0],
paddle_dtype=paddle_dtype,
device_map=device_map,
variant=variant,
safety_checker=None,
)
final_pipe.to(self.device)

checkpoint_path_2 = None
if len(cached_folders) > 2:
checkpoint_path_2 = os.path.join(cached_folders[2])

if interp == "sigmoid":
theta_func = CheckpointMergerPipeline.sigmoid
elif interp == "inv_sigmoid":
theta_func = CheckpointMergerPipeline.inv_sigmoid
elif interp == "add_diff":
theta_func = CheckpointMergerPipeline.add_difference
else:
theta_func = CheckpointMergerPipeline.weighted_sum

# Find each module's state dict.
for attr in final_pipe.config.keys():
if not attr.startswith("_"):
checkpoint_path_1 = os.path.join(cached_folders[1], attr)
if os.path.exists(checkpoint_path_1):
files = [
*glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")),
*glob.glob(os.path.join(checkpoint_path_1, "*.pdprams")),
]
checkpoint_path_1 = files[0] if len(files) > 0 else None
if len(cached_folders) < 3:
checkpoint_path_2 = None
else:
checkpoint_path_2 = os.path.join(cached_folders[2], attr)
if os.path.exists(checkpoint_path_2):
files = [
*glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")),
*glob.glob(os.path.join(checkpoint_path_2, "*.pdprams")),
]
checkpoint_path_2 = files[0] if len(files) > 0 else None
# For an attr if both checkpoint_path_1 and 2 are None, ignore.
# If atleast one is present, deal with it according to interp method, of course only if the state_dict keys match.
if checkpoint_path_1 is None and checkpoint_path_2 is None:
print(f"Skipping {attr}: not present in 2nd or 3d model")
continue
try:
module = getattr(final_pipe, attr)
if isinstance(module, bool): # ignore requires_safety_checker boolean
continue
theta_0 = getattr(module, "state_dict")
theta_0 = theta_0()

update_theta_0 = getattr(module, "load_state_dict")
theta_1 = (
safetensors.paddle.load_file(checkpoint_path_1)
if (checkpoint_path_1.endswith(".safetensors"))
else paddle.load(checkpoint_path_1, map_location="cpu")
)
theta_2 = None
if checkpoint_path_2:
theta_2 = (
safetensors.paddle.load_file(checkpoint_path_2)
if (checkpoint_path_2.endswith(".safetensors"))
else paddle.load(checkpoint_path_2, map_location="cpu")
)

if not theta_0.keys() == theta_1.keys():
print(f"Skipping {attr}: key mismatch")
continue
if theta_2 and not theta_1.keys() == theta_2.keys():
print(f"Skipping {attr}:y mismatch")
except Exception as e:
print(f"Skipping {attr} do to an unexpected error: {str(e)}")
continue
print(f"MERGING {attr}")

for key in theta_0.keys():
if theta_2:
theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha)
else:
theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha)

del theta_1
del theta_2
update_theta_0(theta_0)

del theta_0
return final_pipe

@staticmethod
def weighted_sum(theta0, theta1, theta2, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1)

# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
@staticmethod
def sigmoid(theta0, theta1, theta2, alpha):
alpha = alpha * alpha * (3 - (2 * alpha))
return theta0 + ((theta1 - theta0) * alpha)

# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
@staticmethod
def inv_sigmoid(theta0, theta1, theta2, alpha):
import math

alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
return theta0 + ((theta1 - theta0) * alpha)

@staticmethod
def add_difference(theta0, theta1, theta2, alpha):
return theta0 + (theta1 - theta2) * (1.0 - alpha)

0 comments on commit ab37bfa

Please sign in to comment.