Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add ldm superresolution #3710

Merged
merged 3 commits into from
Nov 10, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ppdiffusers/ppdiffusers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@
get_scheduler,
)
from .pipeline_utils import DiffusionPipeline
from .pipelines import DDIMPipeline, DDPMPipeline, KarrasVePipeline, LDMPipeline, PNDMPipeline, ScoreSdeVePipeline
from .pipelines import DDIMPipeline, DDPMPipeline, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, ScoreSdeVePipeline
from .schedulers import (
EulerAncestralDiscreteScheduler,
DDIMScheduler,
Expand Down
2 changes: 1 addition & 1 deletion ppdiffusers/ppdiffusers/pipelines/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
from ..utils.dummy_paddle_objects import * # noqa F403

if is_paddle_available() and is_paddlenlp_available():
from .latent_diffusion import LDMTextToImagePipeline, LDMBertModel
from .latent_diffusion import LDMTextToImagePipeline, LDMBertModel, LDMSuperResolutionPipeline
from .stable_diffusion import (StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,3 +18,4 @@

if is_paddlenlp_available():
from .pipeline_latent_diffusion import LDMBertModel, LDMTextToImagePipeline
from .pipeline_latent_diffusion_superresolution import LDMSuperResolutionPipeline
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Optional, Tuple, Union
import numpy as np
import PIL

import paddle
import paddle.nn as nn
from ...models import UNet2DModel, VQModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import (
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from paddlenlp.utils.tools import compare_version
if compare_version(PIL.__version__, "9.1.0") >= 0:
Resampling = PIL.Image.Resampling
else:
Resampling = PIL.Image


def preprocess(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=Resampling.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = paddle.to_tensor(image)
return 2.0 * image - 1.0


class LDMSuperResolutionPipeline(DiffusionPipeline):
r"""
A pipeline for image super-resolution using Latent
This class inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

Parameters:
vqvae ([`VQModel`]):
Vector-quantized (VQ) VAE Model to encode and decode images to and from latent representations.
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`],[`PNDMScheduler`].
"""

def __init__(
self,
vqvae: VQModel,
unet: UNet2DModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, ],
):
super().__init__()
self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler)

@paddle.no_grad()
def __call__(
self,
init_image: Union[paddle.Tensor, PIL.Image.Image],
batch_size: Optional[int] = 1,
num_inference_steps: Optional[int] = 100,
eta: Optional[float] = 0.0,
seed: Optional[int] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]:
r"""
Args:
init_image (`paddle.Tensor` or `PIL.Image.Image`):
`Image`, or tensor representing an image batch, that will be used as the starting point for the
process.
batch_size (`int`, *optional*, defaults to 1):
Number of images to generate.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
seed (`int`, *optional*):
The seed used by paddle.randn().
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*):
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.

Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""

if isinstance(init_image, PIL.Image.Image):
batch_size = 1
elif isinstance(init_image, paddle.Tensor):
batch_size = init_image.shape[0]
else:
raise ValueError(
f"`init_image` has to be of type `PIL.Image.Image` or `paddle.Tensor` but is {type(init_image)}"
)

if isinstance(init_image, PIL.Image.Image):
init_image = preprocess(init_image)

height, width = init_image.shape[-2:]

# in_channels should be 6: 3 for latents, 3 for low resolution image
latents_shape = (batch_size, self.unet.in_channels // 2, height, width)
latents_dtype = self.unet.dtype

if seed is not None: paddle.seed(seed)
latents = paddle.randn(latents_shape, dtype=latents_dtype)

init_image = init_image.astype(latents_dtype)

# set timesteps
self.scheduler.set_timesteps(num_inference_steps)

# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps

# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma

# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys())
extra_kwargs = {}
if accepts_eta:
extra_kwargs["eta"] = eta

for t in self.progress_bar(timesteps_tensor):
# concat latents and low resolution image in the channel dimension.
latents_input = paddle.concat([latents, init_image], axis=1)
latents_input = self.scheduler.scale_model_input(latents_input, t)
# predict the noise residual
noise_pred = self.unet(latents_input, t).sample
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents,
**extra_kwargs).prev_sample

# decode the image latents with the VQVAE
image = self.vqvae.decode(latents).sample
image = paddle.clip(image, -1.0, 1.0)
image = image / 2 + 0.5
image = image.transpose([0, 2, 3, 1]).numpy()

if output_type == "pil":
image = self.numpy_to_pil(image)

if not return_dict:
return (image, )

return ImagePipelineOutput(images=image)
15 changes: 15 additions & 0 deletions ppdiffusers/ppdiffusers/utils/dummy_paddle_objects.py
Original file line number Diff line number Diff line change
Expand Up @@ -198,6 +198,21 @@ def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])


class LDMSuperResolutionPipeline(metaclass=DummyObject):
_backends = ["paddle"]

def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])

@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])

@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])


class PNDMPipeline(metaclass=DummyObject):
_backends = ["paddle"]

Expand Down