Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Re-enable isort after upstream bug is addressed #4576

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 4 additions & 7 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,10 @@ repos:
- id: black
files: \.(py|pyi)$
additional_dependencies: [toml]
# Turning off isort temporary due to https://github.com/PyCQA/isort/issues/2077
# As of 2023.1.29, bumping isort to 5.12.0 would resolve the error but requires python3.8+
# Track the issue: https://github.com/PyCQA/isort/issues/2083
# - repo: https://github.com/PyCQA/isort
# rev: 5.10.1
# hooks:
# - id: isort
- repo: https://github.com/PyCQA/isort
rev: 5.11.5
hooks:
- id: isort
- repo: https://github.com/PyCQA/flake8
rev: 4.0.1
hooks:
Expand Down
1 change: 1 addition & 0 deletions paddlenlp/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,7 @@
from .mobilebert.tokenizer import *
from .mpnet.modeling import *
from .mpnet.tokenizer import *
from .nezha.configuration import *
from .nezha.modeling import *
from .nezha.tokenizer import *
from .ppminilm.modeling import *
Expand Down
190 changes: 190 additions & 0 deletions paddlenlp/transformers/nezha/configuration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" NeZha model configuration"""
from __future__ import annotations

from typing import Dict

from ..configuration_utils import PretrainedConfig

__all__ = ["NEZHA_PRETRAINED_INIT_CONFIGURATION", "NeZhaConfig", "NEZHA_PRETRAINED_RESOURCE_FILES_MAP"]

NEZHA_PRETRAINED_INIT_CONFIGURATION = {
"nezha-base-chinese": {
"vocab_size": 21128,
"hidden_size": 768,
"num_hidden_layers": 12,
"num_attention_heads": 12,
"intermediate_size": 3072,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"max_relative_position": 64,
"type_vocab_size": 2,
"initializer_range": 0.02,
"use_relative_position": True,
},
"nezha-large-chinese": {
"vocab_size": 21128,
"hidden_size": 1024,
"num_hidden_layers": 24,
"num_attention_heads": 16,
"intermediate_size": 4096,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"max_relative_position": 64,
"type_vocab_size": 2,
"initializer_range": 0.02,
"use_relative_position": True,
},
"nezha-base-wwm-chinese": {
"vocab_size": 21128,
"hidden_size": 768,
"num_hidden_layers": 12,
"num_attention_heads": 12,
"intermediate_size": 3072,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"max_relative_position": 64,
"type_vocab_size": 2,
"initializer_range": 0.02,
"use_relative_position": True,
},
"nezha-large-wwm-chinese": {
"vocab_size": 21128,
"hidden_size": 1024,
"num_hidden_layers": 24,
"num_attention_heads": 16,
"intermediate_size": 4096,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"max_relative_position": 64,
"type_vocab_size": 2,
"initializer_range": 0.02,
"use_relative_position": True,
},
}
NEZHA_PRETRAINED_RESOURCE_FILES_MAP = {
"model_state": {
"nezha-base-chinese": "https://bj.bcebos.com/paddlenlp/models/transformers/nezha/nezha-base-chinese.pdparams",
"nezha-large-chinese": "https://bj.bcebos.com/paddlenlp/models/transformers/nezha/nezha-large-chinese.pdparams",
"nezha-base-wwm-chinese": "https://bj.bcebos.com/paddlenlp/models/transformers/nezha/nezha-base-wwm-chinese.pdparams",
"nezha-large-wwm-chinese": "https://bj.bcebos.com/paddlenlp/models/transformers/nezha/nezha-large-wwm-chinese.pdparams",
}
}


class NeZhaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`NezhaModel`]. It is used to instantiate an Nezha
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Nezha
[sijunhe/nezha-cn-base](https://huggingface.co/sijunhe/nezha-cn-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, optional, defaults to 21128):
Vocabulary size of the NEZHA model. Defines the different tokens that can be represented by the
*inputs_ids* passed to the forward method of [`NezhaModel`].
embedding_size (`int`, optional, defaults to 128):
Dimensionality of vocabulary embeddings.
hidden_size (`int`, optional, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, optional, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, optional, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, optional, defaults to 3072):
The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, optional, defaults to "gelu"):
The non-linear activation function (function or string) in the encoder and pooler.
hidden_dropout_prob (`float`, optional, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, optional, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, optional, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
(e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, optional, defaults to 2):
The vocabulary size of the *token_type_ids* passed into [`NezhaModel`].
initializer_range (`float`, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, optional, defaults to 1e-12):
The epsilon used by the layer normalization layers.
classifier_dropout (`float`, optional, defaults to 0.1):
The dropout ratio for attached classifiers.
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
Example:
```python
>>> from paddlenlp.transformers import NeZhaConfig, NeZhaModel
>>> # Initializing an Nezha configuration
>>> configuration = NeZhaConfig()
>>> # Initializing a model (with random weights) from the Nezha-base style configuration model
>>> model = NeZhaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
pretrained_init_configuration = NEZHA_PRETRAINED_INIT_CONFIGURATION
model_type = "nezha"

def __init__(
self,
vocab_size=21128,
embedding_size=128,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
max_relative_position=64,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
classifier_dropout=0.1,
pad_token_id=0,
bos_token_id=2,
eos_token_id=3,
use_cache=True,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, **kwargs)

self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.max_relative_position = max_relative_position
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
Loading