Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fnet P0]add PretrainedConfig and unit test #5780

Merged
merged 8 commits into from
May 5, 2023
1 change: 1 addition & 0 deletions paddlenlp/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,7 @@
from .ernie_m.tokenizer import *
from .fnet.modeling import *
from .fnet.tokenizer import *
from .fnet.configuration import *
from .funnel.modeling import *
from .funnel.tokenizer import *
from .funnel.configuration import *
Expand Down
142 changes: 142 additions & 0 deletions paddlenlp/transformers/fnet/configuration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" fnet model configuration"""
from __future__ import annotations

from paddlenlp.transformers.configuration_utils import PretrainedConfig

__all__ = [
"FNET_PRETRAINED_INIT_CONFIGURATION",
"FNET_PRETRAINED_RESOURCE_FILES_MAP",
"FNetConfig",
]

FNET_PRETRAINED_INIT_CONFIGURATION = {
"fnet-base": {
"vocab_size": 32000,
"hidden_size": 768,
"num_hidden_layers": 12,
"intermediate_size": 3072,
"hidden_act": "gelu_new",
"hidden_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 4,
"initializer_range": 0.02,
"layer_norm_eps": 1e-12,
"pad_token_id": 3,
"bos_token_id": 1,
"eos_token_id": 2,
},
"fnet-large": {
"vocab_size": 32000,
"hidden_size": 1024,
"num_hidden_layers": 24,
"intermediate_size": 4096,
"hidden_act": "gelu_new",
"hidden_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 4,
"initializer_range": 0.02,
"layer_norm_eps": 1e-12,
"pad_token_id": 3,
"bos_token_id": 1,
"eos_token_id": 2,
},
}
FNET_PRETRAINED_RESOURCE_FILES_MAP = {
"model_state": {
"fnet-base": "https://bj.bcebos.com/paddlenlp/models/transformers/fnet/fnet-base/model_state.pdparams",
"fnet-large": "https://bj.bcebos.com/paddlenlp/models/transformers/fnet/fnet-large/model_state.pdparams",
}
}


class FNetConfig(PretrainedConfig):
r"""
Args:
vocab_size (int, optional):
Vocabulary size of `inputs_ids` in `FNetModel`. Also is the vocab size of token embedding matrix.
Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling `FNetModel`.
Defaults to `32000`.
hidden_size (int, optional):
Dimensionality of the encoder layer and pooler layer. Defaults to `768`.
num_hidden_layers (int, optional):
Number of hidden layers in the Transformer encoder. Defaults to `12`.
intermediate_size (int, optional):
Dimensionality of the feed-forward (ff) layer in the encoder. Input tensors
to ff layers are firstly projected from `hidden_size` to `intermediate_size`,
and then projected back to `hidden_size`. Typically `intermediate_size` is larger than `hidden_size`.
Defaults to `3072`.
hidden_act (str, optional):
The non-linear activation function in the feed-forward layer.
``"gelu"``, ``"relu"`` and any other paddle supported activation functions
are supported. Defaults to `glue_new`.
hidden_dropout_prob (float, optional):
The dropout probability for all fully connected layers in the embeddings and encoder.
Defaults to `0.1`.
max_position_embeddings (int, optional):
The maximum value of the dimensionality of position encoding, which dictates the maximum supported length of an input
sequence. Defaults to `512`.
type_vocab_size (int, optional):
The vocabulary size of `token_type_ids`. Defaults to `4`.
initializer_range (float, optional):
The standard deviation of the normal initializer. Defaults to `0.02`.
.. note::
A normal_initializer initializes weight matrices as normal distributions.
See :meth:`BertPretrainedModel.init_weights()` for how weights are initialized in `ElectraModel`.
layer_norm_eps(float, optional):
The `epsilon` parameter used in :class:`paddle.nn.LayerNorm` for initializing layer normalization layers.
A small value to the variance added to the normalization layer to prevent division by zero.
Defaults to `1e-12`.
pad_token_id (int, optional):
The index of padding token in the token vocabulary. Defaults to `3`.
add_pooling_layer(bool, optional):
Whether or not to add the pooling layer. Defaults to `True`.
"""

model_type = "fnet"

def __init__(
self,
vocab_size=32000,
hidden_size=768,
num_hidden_layers=12,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=4,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=3,
bos_token_id=1,
eos_token_id=2,
add_pooling_layer=True,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.add_pooling_layer = add_pooling_layer
Loading