Skip to content

Commit

Permalink
add cppd u14m train model and doc (#11052)
Browse files Browse the repository at this point in the history
* add cppd u14m train model

* add cppd u14m train model and doc
  • Loading branch information
Topdu authored Oct 11, 2023
1 parent f59d092 commit 3786b27
Show file tree
Hide file tree
Showing 3 changed files with 29 additions and 8 deletions.
2 changes: 1 addition & 1 deletion configs/rec/rec_svtrnet_cppd_base_en.yml
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ Train:

Eval:
dataset:
name: LMDBDataset
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/evaluation/
transforms:
- DecodeImage: # load image
Expand Down
19 changes: 15 additions & 4 deletions doc/doc_ch/algorithm_rec_cppd.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,22 +37,31 @@ CPPD在场景文本识别公开数据集上的精度(%)和模型文件如下:
| CPPD Base | 98.2 | 95.5 | 97.6 | 87.9 | 90.0 | 92.7 | 93.80 | [英文](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_en_train.tar)|
| CPPD Base 48*160 | 97.5 | 95.5 | 97.7 | 87.7 | 92.4 | 93.7 | 94.10 | [英文](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_48_160_en_train.tar) |

* 在英文合成数据集(MJ+ST)训练,在英文Union14M-L benchmark测试结果[U14m](https://github.com/Mountchicken/Union14M/)
* 英文合成数据集(MJ+ST)训练,英文Union14M-L benchmark测试结果[U14m](https://github.com/Mountchicken/Union14M/)

| 模型 |Curve | Multi-<br/>Oriented |Artistic |Contextless| Salient | Multi-<br/>word | General | Avg | 下载链接 |
|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|:-------:|
| CPPD Tiny | 52.4 | 12.3 | 48.2 | 54.4 | 61.5 | 53.4 | 61.4 | 49.10 | 同上表 |
| CPPD Base | 65.5 | 18.6 | 56.0 | 61.9 | 71.0 | 57.5 | 65.8 | 56.63 | 同上表 |
| CPPD Base 48*160 | 71.9 | 22.1 | 60.5 | 67.9 | 78.3 | 63.9 | 67.1 | 61.69 | 同上表 |

* 中文训练集和测试集来自于[Chinese Benckmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition)
* Union14M-L 训练集训练,英文测试结果。

| 模型 |IC13<br/>857 | SVT |IIIT5k<br/>3000 |IC15<br/>1811| SVTP |CUTE80 | Avg | 下载链接 |
|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|
| CPPD Base 32*128 | 98.7 | 98.5 | 99.4 | 91.7 | 96.7 | 99.7 | 97.44 | [英文](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_u14m_train.tar) |

| 模型 |Curve | Multi-<br/>Oriented |Artistic |Contextless| Salient | Multi-<br/>word | General | Avg | 下载链接 |
|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|:-------:|
| CPPD Base 32*128 | 87.5 | 70.7 | 78.2 | 82.9 | 85.5 | 85.4 | 84.3 | 82.08 | 同上表 |

* 中文训练集和测试集来自于[Chinese Benckmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition)

| 模型 | Scene | Web | Document | Handwriting | Avg | 下载链接 |
|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|
| CPPD Base | 74.4 | 76.1 | 98.6 | 55.3 | 76.10 | [中文](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_ch_train.tar) |
| CPPD Base + STN | 78.4 | 79.3 | 98.9 | 57.6 | 78.55 | [中文](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_stn_ch_train.tar) |


<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
Expand All @@ -67,7 +76,9 @@ CPPD在场景文本识别公开数据集上的精度(%)和模型文件如下:
#### 数据集准备

[英文数据集下载](https://github.com/baudm/parseq)
[Union14M-Benchmark 下载](https://github.com/Mountchicken/Union14M)

[Union14M-L 下载](https://github.com/Mountchicken/Union14M)

[中文数据集下载](https://github.com/fudanvi/benchmarking-chinese-text-recognition#download)

#### 启动训练
Expand Down
16 changes: 13 additions & 3 deletions doc/doc_en/algorithm_rec_cppd_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ Scene text recognition models based on deep learning typically follow an Encoder
<a name="model"></a>
The accuracy (%) and model files of CPPD on the public dataset of scene text recognition are as follows::

* English dataset from [PARSeq](https://github.com/baudm/parseq)
* English dataset from [PARSeq](https://github.com/baudm/parseq).


| Model |IC13<br/>857 | SVT |IIIT5k<br/>3000 |IC15<br/>1811| SVTP |CUTE80 | Avg | Download |
Expand All @@ -36,15 +36,25 @@ The accuracy (%) and model files of CPPD on the public dataset of scene text rec
| CPPD Base | 98.2 | 95.5 | 97.6 | 87.9 | 90.0 | 92.7 | 93.80 | [en](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_en_train.tar)|
| CPPD Base 48*160 | 97.5 | 95.5 | 97.7 | 87.7 | 92.4 | 93.7 | 94.10 | [en](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_48_160_en_train.tar) |

* Union14M-L benchmark from [U14m](https://github.com/Mountchicken/Union14M/)
* Trained on Synth dataset(MJ+ST), Test on Union14M-L benchmark from [U14m](https://github.com/Mountchicken/Union14M/).

| Model |Curve | Multi-<br/>Oriented |Artistic |Contextless| Salient | Multi-<br/>word | General | Avg | Download |
|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|:-------:|
| CPPD Tiny | 52.4 | 12.3 | 48.2 | 54.4 | 61.5 | 53.4 | 61.4 | 49.10 | Same as the table above. |
| CPPD Base | 65.5 | 18.6 | 56.0 | 61.9 | 71.0 | 57.5 | 65.8 | 56.63 | Same as the table above. |
| CPPD Base 48*160 | 71.9 | 22.1 | 60.5 | 67.9 | 78.3 | 63.9 | 67.1 | 61.69 | Same as the table above. |

* Chinese dataset from [Chinese Benckmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition)
* Trained on Union14M-L training dataset.

| Model |IC13<br/>857 | SVT |IIIT5k<br/>3000 |IC15<br/>1811| SVTP |CUTE80 | Avg | Download |
|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|
| CPPD Base 32*128 | 98.7 | 98.5 | 99.4 | 91.7 | 96.7 | 99.7 | 97.44 | [en](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_u14m_train.tar) |

| Model |Curve | Multi-<br/>Oriented |Artistic |Contextless| Salient | Multi-<br/>word | General | Avg | Download |
|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|:-------:|
| CPPD Base 32*128 | 87.5 | 70.7 | 78.2 | 82.9 | 85.5 | 85.4 | 84.3 | 82.08 | Same as the table above. |

* Chinese dataset from [Chinese Benckmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition).

| Model | Scene | Web | Document | Handwriting | Avg | Download |
|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|
Expand Down

0 comments on commit 3786b27

Please sign in to comment.