-
Notifications
You must be signed in to change notification settings - Fork 7.8k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Latexocr paddle #13401
Latexocr paddle #13401
Changes from all commits
249c3c3
f5e9ec9
2614722
3125368
2d07f91
ca6d4c8
67bfe23
195f6d8
4e5fb6a
ea1162a
f66d37f
715027d
beb1dde
ac5d6c1
357bdf3
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
Global: | ||
use_gpu: True | ||
epoch_num: 500 | ||
log_smooth_window: 20 | ||
print_batch_step: 100 | ||
save_model_dir: ./output/rec/latex_ocr/ | ||
save_epoch_step: 5 | ||
max_seq_len: 512 | ||
# evaluation is run every 60000 iterations (22 epoch)(batch_size = 56) | ||
eval_batch_step: [0, 60000] | ||
cal_metric_during_train: True | ||
pretrained_model: | ||
checkpoints: | ||
save_inference_dir: | ||
use_visualdl: False | ||
infer_img: doc/datasets/pme_demo/0000013.png | ||
infer_mode: False | ||
use_space_char: False | ||
rec_char_dict_path: ppocr/utils/dict/latex_ocr_tokenizer.json | ||
save_res_path: ./output/rec/predicts_latexocr.txt | ||
|
||
Optimizer: | ||
name: AdamW | ||
beta1: 0.9 | ||
beta2: 0.999 | ||
lr: | ||
name: Const | ||
learning_rate: 0.0001 | ||
|
||
Architecture: | ||
model_type: rec | ||
algorithm: LaTeXOCR | ||
in_channels: 1 | ||
Transform: | ||
Backbone: | ||
name: HybridTransformer | ||
img_size: [192, 672] | ||
patch_size: 16 | ||
num_classes: 0 | ||
embed_dim: 256 | ||
depth: 4 | ||
num_heads: 8 | ||
input_channel: 1 | ||
is_predict: False | ||
is_export: False | ||
Head: | ||
name: LaTeXOCRHead | ||
pad_value: 0 | ||
is_export: False | ||
decoder_args: | ||
attn_on_attn: True | ||
cross_attend: True | ||
ff_glu: True | ||
rel_pos_bias: False | ||
use_scalenorm: False | ||
|
||
Loss: | ||
name: LaTeXOCRLoss | ||
|
||
PostProcess: | ||
name: LaTeXOCRDecode | ||
rec_char_dict_path: ppocr/utils/dict/latex_ocr_tokenizer.json | ||
|
||
Metric: | ||
name: LaTeXOCRMetric | ||
main_indicator: exp_rate | ||
cal_blue_score: False | ||
|
||
Train: | ||
dataset: | ||
name: LaTeXOCRDataSet | ||
data: ./train_data/LaTeXOCR/latexocr_train.pkl | ||
min_dimensions: [32, 32] | ||
max_dimensions: [672, 192] | ||
batch_size_per_pair: 56 | ||
keep_smaller_batches: False | ||
transforms: | ||
- DecodeImage: | ||
channel_first: False | ||
- MinMaxResize: | ||
min_dimensions: [32, 32] | ||
max_dimensions: [672, 192] | ||
- LatexTrainTransform: | ||
bitmap_prob: .04 | ||
- NormalizeImage: | ||
mean: [0.7931, 0.7931, 0.7931] | ||
std: [0.1738, 0.1738, 0.1738] | ||
order: 'hwc' | ||
- LatexImageFormat: | ||
- KeepKeys: | ||
keep_keys: ['image'] | ||
loader: | ||
shuffle: True | ||
batch_size_per_card: 1 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 训练bs 只能是1? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. batch size 需要在batch_size_per_pair处设置. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这里的 batch_size_per_card 是指图像公式文本对列表的数量.之所以这样写.是因为原始的LateXOCR 数据集需要先对图片按大小分组,再从不同分组中取 batch_size_per_pair 数量的图片进行模型训练.最小的采样单位是batch_size_per_pair ,而不是单张图片. 如果最小单位是单张图片,则无法保证每个batch的图片大小相同. |
||
drop_last: False | ||
num_workers: 0 | ||
collate_fn: LaTeXOCRCollator | ||
|
||
Eval: | ||
dataset: | ||
name: LaTeXOCRDataSet | ||
data: ./train_data/LaTeXOCR/latexocr_val.pkl | ||
min_dimensions: [32, 32] | ||
max_dimensions: [672, 192] | ||
batch_size_per_pair: 10 | ||
keep_smaller_batches: True | ||
transforms: | ||
- DecodeImage: | ||
channel_first: False | ||
- MinMaxResize: | ||
min_dimensions: [32, 32] | ||
max_dimensions: [672, 192] | ||
- LatexTestTransform: | ||
- NormalizeImage: | ||
mean: [0.7931, 0.7931, 0.7931] | ||
std: [0.1738, 0.1738, 0.1738] | ||
order: 'hwc' | ||
- LatexImageFormat: | ||
- KeepKeys: | ||
keep_keys: ['image'] | ||
loader: | ||
shuffle: False | ||
drop_last: False | ||
batch_size_per_card: 1 | ||
num_workers: 0 | ||
collate_fn: LaTeXOCRCollator |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
# 印刷数学公式识别算法-LaTeX-OCR | ||
|
||
- [1. 算法简介](#1) | ||
- [2. 环境配置](#2) | ||
- [3. 模型训练、评估、预测](#3) | ||
- [3.1 pickle 标签文件生成](#3-1) | ||
- [3.2 训练](#3-2) | ||
- [3.3 评估](#3-3) | ||
- [3.4 预测](#3-4) | ||
- [4. 推理部署](#4) | ||
- [4.1 Python推理](#4-1) | ||
- [4.2 C++推理](#4-2) | ||
- [4.3 Serving服务化部署](#4-3) | ||
- [4.4 更多推理部署](#4-4) | ||
- [5. FAQ](#5) | ||
|
||
<a name="1"></a> | ||
## 1. 算法简介 | ||
|
||
原始项目: | ||
> [https://github.com/lukas-blecher/LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) | ||
|
||
|
||
|
||
<a name="model"></a> | ||
`LaTeX-OCR`使用[`LaTeX-OCR印刷公式数据集`](https://drive.google.com/drive/folders/13CA4vAmOmD_I_dSbvLp-Lf0s6KiaNfuO)进行训练,在对应测试集上的精度如下: | ||
|
||
| 模型 | 骨干网络 |配置文件 | BLEU score | normed edit distance | ExpRate |下载链接| | ||
|-----------|------------| ----- |:-----------:|:---------------------:|:---------:| ----- | | ||
| LaTeX-OCR | Hybrid ViT |[rec_latex_ocr.yml](../../configs/rec/rec_latex_ocr.yml)| 0.8821 | 0.0823 | 40.01% |[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_latex_ocr_train.tar)| | ||
|
||
<a name="2"></a> | ||
## 2. 环境配置 | ||
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 | ||
|
||
<a name="3"></a> | ||
## 3. 模型训练、评估、预测 | ||
|
||
<a name="3-1"></a> | ||
|
||
### 3.1 pickle 标签文件生成 | ||
从[谷歌云盘](https://drive.google.com/drive/folders/13CA4vAmOmD_I_dSbvLp-Lf0s6KiaNfuO)中下载 formulae.zip 和 math.txt,之后,使用如下命令,生成 pickle 标签文件。 | ||
|
||
```shell | ||
# 创建 LaTeX-OCR 数据集目录 | ||
mkdir -p train_data/LaTeXOCR | ||
# 解压formulae.zip ,并拷贝math.txt | ||
unzip -d train_data/LaTeXOCR path/formulae.zip | ||
cp path/math.txt train_data/LaTeXOCR | ||
# 将原始的 .txt 文件转换为 .pkl 文件,从而对不同尺度的图像进行分组 | ||
# 训练集转换 | ||
python ppocr/utils/formula_utils/math_txt2pkl.py --image_dir=train_data/LaTeXOCR/train --mathtxt_path=train_data/LaTeXOCR/math.txt --output_dir=train_data/LaTeXOCR/ | ||
# 验证集转换 | ||
python ppocr/utils/formula_utils/math_txt2pkl.py --image_dir=train_data/LaTeXOCR/val --mathtxt_path=train_data/LaTeXOCR/math.txt --output_dir=train_data/LaTeXOCR/ | ||
# 测试集转换 | ||
python ppocr/utils/formula_utils/math_txt2pkl.py --image_dir=train_data/LaTeXOCR/test --mathtxt_path=train_data/LaTeXOCR/math.txt --output_dir=train_data/LaTeXOCR/ | ||
``` | ||
|
||
### 3.2 模型训练 | ||
|
||
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练`LaTeX-OCR`识别模型时需要**更换配置文件**为`LaTeX-OCR`的[配置文件](../../configs/rec/rec_latex_ocr.yml)。 | ||
|
||
#### 启动训练 | ||
|
||
|
||
具体地,在完成数据准备后,便可以启动训练,训练命令如下: | ||
```shell | ||
#单卡训练 (默认训练方式) | ||
python3 tools/train.py -c configs/rec/rec_latex_ocr.yml | ||
#多卡训练,通过--gpus参数指定卡号 | ||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_latex_ocr.yml | ||
``` | ||
|
||
**注意:** | ||
|
||
- 默认每训练22个epoch(60000次iteration)进行1次评估,若您更改训练的batch_size,或更换数据集,请在训练时作出如下修改 | ||
``` | ||
python3 tools/train.py -c configs/rec/rec_latex_ocr.yml -o Global.eval_batch_step=[0,{length_of_dataset//batch_size*22}] | ||
``` | ||
|
||
<a name="3-2"></a> | ||
### 3.3 评估 | ||
|
||
可下载已训练完成的[模型文件](https://paddleocr.bj.bcebos.com/contribution/rec_latex_ocr_train.tar),使用如下命令进行评估: | ||
|
||
```shell | ||
# 注意将pretrained_model的路径设置为本地路径。若使用自行训练保存的模型,请注意修改路径和文件名为{path/to/weights}/{model_name}。 | ||
# 验证集评估 | ||
python3 tools/eval.py -c configs/rec/rec_latex_ocr.yml -o Global.pretrained_model=./rec_latex_ocr_train/best_accuracy.pdparams Metric.cal_blue_score=True | ||
# 测试集评估 | ||
python3 tools/eval.py -c configs/rec/rec_latex_ocr.yml -o Global.pretrained_model=./rec_latex_ocr_train/best_accuracy.pdparams Metric.cal_blue_score=True Eval.dataset.data=./train_data/LaTeXOCR/latexocr_test.pkl | ||
``` | ||
|
||
<a name="3-3"></a> | ||
### 3.4 预测 | ||
|
||
使用如下命令进行单张图片预测: | ||
```shell | ||
# 注意将pretrained_model的路径设置为本地路径。 | ||
python3 tools/infer_rec.py -c configs/rec/rec_latex_ocr.yml -o Architecture.Backbone.is_predict=True Architecture.Backbone.is_export=True Architecture.Head.is_export=True Global.infer_img='./doc/datasets/pme_demo/0000013.png' Global.pretrained_model=./rec_latex_ocr_train/best_accuracy.pdparams | ||
# 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/datasets/pme_demo/'。 | ||
``` | ||
|
||
<a name="4"></a> | ||
## 4. 推理部署 | ||
|
||
<a name="4-1"></a> | ||
### 4.1 Python推理 | ||
首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/contribution/rec_latex_ocr_train.tar) ),可以使用如下命令进行转换: | ||
|
||
```shell | ||
# 注意将pretrained_model的路径设置为本地路径。 | ||
python3 tools/export_model.py -c configs/rec/rec_latex_ocr.yml -o Global.pretrained_model=./rec_latex_ocr_train/best_accuracy.pdparams Global.save_inference_dir=./inference/rec_latex_ocr_infer/ Architecture.Backbone.is_predict=True Architecture.Backbone.is_export=True Architecture.Head.is_export=True | ||
|
||
# 目前的静态图模型支持的最大输出长度为512 | ||
``` | ||
**注意:** | ||
- 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请检查配置文件中的`rec_char_dict_path`是否为所需要的字典文件。 | ||
- [转换后模型下载地址](https://paddleocr.bj.bcebos.com/contribution/rec_latex_ocr_infer.tar) | ||
|
||
转换成功后,在目录下有三个文件: | ||
``` | ||
/inference/rec_latex_ocr_infer/ | ||
├── inference.pdiparams # 识别inference模型的参数文件 | ||
├── inference.pdiparams.info # 识别inference模型的参数信息,可忽略 | ||
└── inference.pdmodel # 识别inference模型的program文件 | ||
``` | ||
|
||
执行如下命令进行模型推理: | ||
|
||
```shell | ||
python3 tools/infer/predict_rec.py --image_dir='./doc/datasets/pme_demo/0000295.png' --rec_algorithm="LaTeXOCR" --rec_batch_num=1 --rec_model_dir="./inference/rec_latex_ocr_infer/" --rec_char_dict_path="./ppocr/utils/dict/latex_ocr_tokenizer.json" | ||
|
||
# 预测文件夹下所有图像时,可修改image_dir为文件夹,如 --image_dir='./doc/datasets/pme_demo/'。 | ||
``` | ||
| ||
|
||
![测试图片样例](../datasets/pme_demo/0000295.png) | ||
|
||
执行命令后,上面图像的预测结果(识别的文本)会打印到屏幕上,示例如下: | ||
```shell | ||
Predicts of ./doc/datasets/pme_demo/0000295.png:\zeta_{0}(\nu)=-{\frac{\nu\varrho^{-2\nu}}{\pi}}\int_{\mu}^{\infty}d\omega\int_{C_{+}}d z{\frac{2z^{2}}{(z^{2}+\omega^{2})^{\nu+1}}}{\tilde{\Psi}}(\omega;z)e^{i\epsilon z}~~~, | ||
``` | ||
|
||
|
||
**注意**: | ||
|
||
- 需要注意预测图像为**白底黑字**,即手写公式部分为黑色,背景为白色的图片。 | ||
- 在推理时需要设置参数`rec_char_dict_path`指定字典,如果您修改了字典,请修改该参数为您的字典文件。 | ||
- 如果您修改了预处理方法,需修改`tools/infer/predict_rec.py`中 LaTeX-OCR 的预处理为您的预处理方法。 | ||
|
||
|
||
<a name="4-2"></a> | ||
### 4.2 C++推理部署 | ||
|
||
由于C++预处理后处理还未支持 LaTeX-OCR,所以暂未支持 | ||
|
||
<a name="4-3"></a> | ||
### 4.3 Serving服务化部署 | ||
|
||
暂不支持 | ||
|
||
<a name="4-4"></a> | ||
### 4.4 更多推理部署 | ||
|
||
暂不支持 | ||
|
||
<a name="5"></a> | ||
## 5. FAQ | ||
|
||
1. LaTeX-OCR 数据集来自于[LaTeXOCR源repo](https://github.com/lukas-blecher/LaTeX-OCR) 。 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
确认下总epoch数是500吗
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
是的 .需要跑够500 epoch, ExpRate 才能达到pytorch 版本公布模型的精度. 不同训练 epoch 的评估结果如下表;
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.