Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

support export after save model #13844

Merged
merged 1 commit into from
Sep 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
381 changes: 381 additions & 0 deletions ppocr/utils/export_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,381 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import json
import copy
import paddle
import paddle.nn as nn
from paddle.jit import to_static

from collections import OrderedDict
from argparse import ArgumentParser, RawDescriptionHelpFormatter
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.logging import get_logger


def represent_dictionary_order(self, dict_data):
return self.represent_mapping("tag:yaml.org,2002:map", dict_data.items())


def setup_orderdict():
yaml.add_representer(OrderedDict, represent_dictionary_order)


def dump_infer_config(config, path, logger):
setup_orderdict()
infer_cfg = OrderedDict()
if config["Global"].get("hpi_config_path", None):
hpi_config = yaml.safe_load(open(config["Global"]["hpi_config_path"], "r"))
rec_resize_img_dict = next(
(
item
for item in config["Eval"]["dataset"]["transforms"]
if "RecResizeImg" in item
),
None,
)
if rec_resize_img_dict:
dynamic_shapes = [1] + rec_resize_img_dict["RecResizeImg"]["image_shape"]
if hpi_config["Hpi"]["backend_config"].get("paddle_tensorrt", None):
hpi_config["Hpi"]["backend_config"]["paddle_tensorrt"][
"dynamic_shapes"
]["x"] = [dynamic_shapes for i in range(3)]
hpi_config["Hpi"]["backend_config"]["paddle_tensorrt"][
"max_batch_size"
] = 1
if hpi_config["Hpi"]["backend_config"].get("tensorrt", None):
hpi_config["Hpi"]["backend_config"]["tensorrt"]["dynamic_shapes"][
"x"
] = [dynamic_shapes for i in range(3)]
hpi_config["Hpi"]["backend_config"]["tensorrt"]["max_batch_size"] = 1
else:
if hpi_config["Hpi"]["backend_config"].get("paddle_tensorrt", None):
hpi_config["Hpi"]["supported_backends"]["gpu"].remove("paddle_tensorrt")
del hpi_config["Hpi"]["backend_config"]["paddle_tensorrt"]
if hpi_config["Hpi"]["backend_config"].get("tensorrt", None):
hpi_config["Hpi"]["supported_backends"]["gpu"].remove("tensorrt")
del hpi_config["Hpi"]["backend_config"]["tensorrt"]
infer_cfg["Hpi"] = hpi_config["Hpi"]
if config["Global"].get("pdx_model_name", None):
infer_cfg["Global"] = {}
infer_cfg["Global"]["model_name"] = config["Global"]["pdx_model_name"]

infer_cfg["PreProcess"] = {"transform_ops": config["Eval"]["dataset"]["transforms"]}
postprocess = OrderedDict()
for k, v in config["PostProcess"].items():
postprocess[k] = v

if config["Architecture"].get("algorithm") in ["LaTeXOCR"]:
tokenizer_file = config["Global"].get("rec_char_dict_path")
if tokenizer_file is not None:
with open(tokenizer_file, encoding="utf-8") as tokenizer_config_handle:
character_dict = json.load(tokenizer_config_handle)
postprocess["character_dict"] = character_dict
else:
if config["Global"].get("character_dict_path") is not None:
with open(config["Global"]["character_dict_path"], encoding="utf-8") as f:
lines = f.readlines()
character_dict = [line.strip("\n") for line in lines]
postprocess["character_dict"] = character_dict

infer_cfg["PostProcess"] = postprocess

with open(path, "w") as f:
yaml.dump(
infer_cfg, f, default_flow_style=False, encoding="utf-8", allow_unicode=True
)
logger.info("Export inference config file to {}".format(os.path.join(path)))


def export_single_model(
model, arch_config, save_path, logger, input_shape=None, quanter=None
):
if arch_config["algorithm"] == "SRN":
max_text_length = arch_config["Head"]["max_text_length"]
other_shape = [
paddle.static.InputSpec(shape=[None, 1, 64, 256], dtype="float32"),
[
paddle.static.InputSpec(shape=[None, 256, 1], dtype="int64"),
paddle.static.InputSpec(
shape=[None, max_text_length, 1], dtype="int64"
),
paddle.static.InputSpec(
shape=[None, 8, max_text_length, max_text_length], dtype="int64"
),
paddle.static.InputSpec(
shape=[None, 8, max_text_length, max_text_length], dtype="int64"
),
],
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "SAR":
other_shape = [
paddle.static.InputSpec(shape=[None, 3, 48, 160], dtype="float32"),
[paddle.static.InputSpec(shape=[None], dtype="float32")],
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] in ["SVTR_LCNet", "SVTR_HGNet"]:
other_shape = [
paddle.static.InputSpec(shape=[None, 3, 48, -1], dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] in ["SVTR", "CPPD"]:
other_shape = [
paddle.static.InputSpec(shape=[None] + input_shape, dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "PREN":
other_shape = [
paddle.static.InputSpec(shape=[None, 3, 64, 256], dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
elif arch_config["model_type"] == "sr":
other_shape = [
paddle.static.InputSpec(shape=[None, 3, 16, 64], dtype="float32")
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "ViTSTR":
other_shape = [
paddle.static.InputSpec(shape=[None, 1, 224, 224], dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "ABINet":
if not input_shape:
input_shape = [3, 32, 128]
other_shape = [
paddle.static.InputSpec(shape=[None] + input_shape, dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] in ["NRTR", "SPIN", "RFL"]:
other_shape = [
paddle.static.InputSpec(shape=[None, 1, 32, 100], dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] in ["SATRN"]:
other_shape = [
paddle.static.InputSpec(shape=[None, 3, 32, 100], dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "VisionLAN":
other_shape = [
paddle.static.InputSpec(shape=[None, 3, 64, 256], dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "RobustScanner":
max_text_length = arch_config["Head"]["max_text_length"]
other_shape = [
paddle.static.InputSpec(shape=[None, 3, 48, 160], dtype="float32"),
[
paddle.static.InputSpec(
shape=[
None,
],
dtype="float32",
),
paddle.static.InputSpec(shape=[None, max_text_length], dtype="int64"),
],
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "CAN":
other_shape = [
[
paddle.static.InputSpec(shape=[None, 1, None, None], dtype="float32"),
paddle.static.InputSpec(shape=[None, 1, None, None], dtype="float32"),
paddle.static.InputSpec(
shape=[None, arch_config["Head"]["max_text_length"]], dtype="int64"
),
]
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] == "LaTeXOCR":
other_shape = [
paddle.static.InputSpec(shape=[None, 1, None, None], dtype="float32"),
]
model = to_static(model, input_spec=other_shape)
elif arch_config["algorithm"] in ["LayoutLM", "LayoutLMv2", "LayoutXLM"]:
input_spec = [
paddle.static.InputSpec(shape=[None, 512], dtype="int64"), # input_ids
paddle.static.InputSpec(shape=[None, 512, 4], dtype="int64"), # bbox
paddle.static.InputSpec(shape=[None, 512], dtype="int64"), # attention_mask
paddle.static.InputSpec(shape=[None, 512], dtype="int64"), # token_type_ids
paddle.static.InputSpec(shape=[None, 3, 224, 224], dtype="int64"), # image
]
if "Re" in arch_config["Backbone"]["name"]:
input_spec.extend(
[
paddle.static.InputSpec(
shape=[None, 512, 3], dtype="int64"
), # entities
paddle.static.InputSpec(
shape=[None, None, 2], dtype="int64"
), # relations
]
)
if model.backbone.use_visual_backbone is False:
input_spec.pop(4)
model = to_static(model, input_spec=[input_spec])
else:
infer_shape = [3, -1, -1]
if arch_config["model_type"] == "rec":
infer_shape = [3, 32, -1] # for rec model, H must be 32
if (
"Transform" in arch_config
and arch_config["Transform"] is not None
and arch_config["Transform"]["name"] == "TPS"
):
logger.info(
"When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training"
)
infer_shape[-1] = 100
elif arch_config["model_type"] == "table":
infer_shape = [3, 488, 488]
if arch_config["algorithm"] == "TableMaster":
infer_shape = [3, 480, 480]
if arch_config["algorithm"] == "SLANet":
infer_shape = [3, -1, -1]
model = to_static(
model,
input_spec=[
paddle.static.InputSpec(shape=[None] + infer_shape, dtype="float32")
],
)

if (
arch_config["model_type"] != "sr"
and arch_config["Backbone"]["name"] == "PPLCNetV3"
):
# for rep lcnetv3
for layer in model.sublayers():
if hasattr(layer, "rep") and not getattr(layer, "is_repped"):
layer.rep()

if quanter is None:
paddle.jit.save(model, save_path)
else:
quanter.save_quantized_model(model, save_path)
logger.info("inference model is saved to {}".format(save_path))
return


def export(config, base_model=None, save_path=None):
if paddle.distributed.get_rank() != 0:
return
logger = get_logger()
# build post process
post_process_class = build_post_process(config["PostProcess"], config["Global"])

# build model
# for rec algorithm
if hasattr(post_process_class, "character"):
char_num = len(getattr(post_process_class, "character"))
if config["Architecture"]["algorithm"] in [
"Distillation",
]: # distillation model
for key in config["Architecture"]["Models"]:
if (
config["Architecture"]["Models"][key]["Head"]["name"] == "MultiHead"
): # multi head
out_channels_list = {}
if config["PostProcess"]["name"] == "DistillationSARLabelDecode":
char_num = char_num - 2
if config["PostProcess"]["name"] == "DistillationNRTRLabelDecode":
char_num = char_num - 3
out_channels_list["CTCLabelDecode"] = char_num
out_channels_list["SARLabelDecode"] = char_num + 2
out_channels_list["NRTRLabelDecode"] = char_num + 3
config["Architecture"]["Models"][key]["Head"][
"out_channels_list"
] = out_channels_list
else:
config["Architecture"]["Models"][key]["Head"][
"out_channels"
] = char_num
# just one final tensor needs to exported for inference
config["Architecture"]["Models"][key]["return_all_feats"] = False
elif config["Architecture"]["Head"]["name"] == "MultiHead": # multi head
out_channels_list = {}
char_num = len(getattr(post_process_class, "character"))
if config["PostProcess"]["name"] == "SARLabelDecode":
char_num = char_num - 2
if config["PostProcess"]["name"] == "NRTRLabelDecode":
char_num = char_num - 3
out_channels_list["CTCLabelDecode"] = char_num
out_channels_list["SARLabelDecode"] = char_num + 2
out_channels_list["NRTRLabelDecode"] = char_num + 3
config["Architecture"]["Head"]["out_channels_list"] = out_channels_list
else: # base rec model
config["Architecture"]["Head"]["out_channels"] = char_num

# for sr algorithm
if config["Architecture"]["model_type"] == "sr":
config["Architecture"]["Transform"]["infer_mode"] = True

# for latexocr algorithm
if config["Architecture"].get("algorithm") in ["LaTeXOCR"]:
config["Architecture"]["Backbone"]["is_predict"] = True
config["Architecture"]["Backbone"]["is_export"] = True
config["Architecture"]["Head"]["is_export"] = True
if base_model is not None:
model = base_model
if isinstance(model, paddle.DataParallel):
model = copy.deepcopy(model._layers)
else:
model = copy.deepcopy(model)
else:
model = build_model(config["Architecture"])
load_model(config, model, model_type=config["Architecture"]["model_type"])
model.eval()

if not save_path:
save_path = config["Global"]["save_inference_dir"]
yaml_path = os.path.join(save_path, "inference.yml")

arch_config = config["Architecture"]

if (
arch_config["algorithm"] in ["SVTR", "CPPD"]
and arch_config["Head"]["name"] != "MultiHead"
):
input_shape = config["Eval"]["dataset"]["transforms"][-2]["SVTRRecResizeImg"][
"image_shape"
]
elif arch_config["algorithm"].lower() == "ABINet".lower():
rec_rs = [
c
for c in config["Eval"]["dataset"]["transforms"]
if "ABINetRecResizeImg" in c
]
input_shape = rec_rs[0]["ABINetRecResizeImg"]["image_shape"] if rec_rs else None
else:
input_shape = None

if arch_config["algorithm"] in [
"Distillation",
]: # distillation model
archs = list(arch_config["Models"].values())
for idx, name in enumerate(model.model_name_list):
sub_model_save_path = os.path.join(save_path, name, "inference")
export_single_model(
model.model_list[idx], archs[idx], sub_model_save_path, logger
)
else:
save_path = os.path.join(save_path, "inference")
export_single_model(
model, arch_config, save_path, logger, input_shape=input_shape
)
dump_infer_config(config, yaml_path, logger)
Loading