Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【SCU】【PPSCI Export&Infer No.28】phylstm #1031

Open
wants to merge 1 commit into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions docs/zh/examples/phylstm.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,44 @@
python phylstm3.py mode=eval EVAL.pretrained_model_path=https://paddle-org.bj.bcebos.com/paddlescience/models/phylstm/phylstm3_pretrained.pdparams
```

=== "模型导出命令"

=== "phylstm2"

``` sh
python phylstm2.py mode=export
```

=== "phylstm3"

``` sh
python phylstm3.py mode=export
```

=== "模型推理命令"

=== "phylstm2"

``` sh
# linux
wget -nc https://paddle-org.bj.bcebos.com/paddlescience/datasets/PhyLSTM/data_boucwen.mat
# windows
# curl https://paddle-org.bj.bcebos.com/paddlescience/datasets/PhyLSTM/data_boucwen.mat -o data_boucwen.mat
python phylstm2.py mode=infer
```

=== "phylstm3"

``` sh
# linux
wget -nc https://paddle-org.bj.bcebos.com/paddlescience/datasets/PhyLSTM/data_boucwen.mat
# windows
# curl https://paddle-org.bj.bcebos.com/paddlescience/datasets/PhyLSTM/data_boucwen.mat -o data_boucwen.mat
python phylstm3.py mode=infer
```



| 预训练模型 | 指标 |
|:--| :--|
| [phylstm2_pretrained.pdparams](https://paddle-org.bj.bcebos.com/paddlescience/models/phylstm/phylstm2_pretrained.pdparams) | loss(sup_valid): 0.00799 |
Expand Down
18 changes: 18 additions & 0 deletions examples/phylstm/conf/phylstm2.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -48,3 +48,21 @@ TRAIN:
EVAL:
pretrained_model_path: null
eval_with_no_grad: true

# inference settings
INFER:
pretrained_model_path: https://paddle-org.bj.bcebos.com/paddlescience/models/phylstm/phylstm2_pretrained.pdparams
export_path: ./inference/phylstm2
pdmodel_path: ${INFER.export_path}.pdmodel
pdiparams_path: ${INFER.export_path}.pdiparams
onnx_path: ${INFER.export_path}.onnx
device: gpu
engine: native
precision: fp32
ir_optim: true
min_subgraph_size: 5
gpu_mem: 2000
gpu_id: 0
max_batch_size: 10240
num_cpu_threads: 10
batch_size: 10240
18 changes: 18 additions & 0 deletions examples/phylstm/conf/phylstm3.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -48,3 +48,21 @@ TRAIN:
EVAL:
pretrained_model_path: null
eval_with_no_grad: true

# inference settings
INFER:
pretrained_model_path: https://paddle-org.bj.bcebos.com/paddlescience/models/phylstm/phylstm3_pretrained.pdparams
export_path: ./inference/phylstm3
pdmodel_path: ${INFER.export_path}.pdmodel
pdiparams_path: ${INFER.export_path}.pdiparams
onnx_path: ${INFER.export_path}.onnx
device: gpu
engine: native
precision: fp32
ir_optim: true
min_subgraph_size: 5
gpu_mem: 2000
gpu_id: 0
max_batch_size: 10240
num_cpu_threads: 10
batch_size: 10240
132 changes: 131 additions & 1 deletion examples/phylstm/phylstm2.py
Original file line number Diff line number Diff line change
Expand Up @@ -308,14 +308,144 @@ def evaluate(cfg: DictConfig):
solver.eval()


def export(cfg: DictConfig):
mat = scipy.io.loadmat(cfg.DATA_FILE_PATH)
u_data = mat["target_X_tf"]
u_data = u_data.reshape([u_data.shape[0], u_data.shape[1], 1])
u_all = u_data
eta_star = u_all[0:10]
eta = eta_star
# set model
model = ppsci.arch.DeepPhyLSTM(
cfg.MODEL.input_size,
eta.shape[2],
cfg.MODEL.hidden_size,
cfg.MODEL.model_type,
)
Comment on lines +319 to +324
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

红框里的代码也需要加上
image

# initialize solver
solver = ppsci.solver.Solver(
model,
pretrained_model_path=cfg.INFER.pretrained_model_path,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
pretrained_model_path=cfg.INFER.pretrained_model_path,
cfg=cfg,

)
# export model
from paddle.static import InputSpec

input_spec = [
{key: InputSpec([None, 1], "float32", name=key) for key in model.input_keys},
]
Comment on lines +333 to +335
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里的形状可以运行evaluate时,在DeepPhyLSTM.forward函数里打印输入的shape得到

solver.export(input_spec, cfg.INFER.export_path)


def inference(cfg: DictConfig):
from deploy.python_infer import pinn_predictor

predictor = pinn_predictor.PINNPredictor(cfg)

mat = scipy.io.loadmat(cfg.DATA_FILE_PATH)
ag_data = mat["input_tf"] # ag, ad, av
u_data = mat["target_X_tf"]
ut_data = mat["target_Xd_tf"]
utt_data = mat["target_Xdd_tf"]
ag_data = ag_data.reshape([ag_data.shape[0], ag_data.shape[1], 1])
u_data = u_data.reshape([u_data.shape[0], u_data.shape[1], 1])
ut_data = ut_data.reshape([ut_data.shape[0], ut_data.shape[1], 1])
utt_data = utt_data.reshape([utt_data.shape[0], utt_data.shape[1], 1])

t = mat["time"]
dt = t[0, 1] - t[0, 0]

ag_all = ag_data
u_all = u_data
u_t_all = ut_data
u_tt_all = utt_data

# finite difference
N = u_data.shape[1]
phi1 = np.concatenate(
[
np.array([-3 / 2, 2, -1 / 2]),
np.zeros([N - 3]),
]
)
temp1 = np.concatenate([-1 / 2 * np.identity(N - 2), np.zeros([N - 2, 2])], axis=1)
temp2 = np.concatenate([np.zeros([N - 2, 2]), 1 / 2 * np.identity(N - 2)], axis=1)
phi2 = temp1 + temp2
phi3 = np.concatenate(
[
np.zeros([N - 3]),
np.array([1 / 2, -2, 3 / 2]),
]
)
phi_t0 = (
1
/ dt
* np.concatenate(
[
np.reshape(phi1, [1, phi1.shape[0]]),
phi2,
np.reshape(phi3, [1, phi3.shape[0]]),
],
axis=0,
)
)
phi_t0 = np.reshape(phi_t0, [1, N, N])

ag_star = ag_all[0:10]
eta_star = u_all[0:10]
eta_t_star = u_t_all[0:10]
eta_tt_star = u_tt_all[0:10]
ag_c_star = ag_all[0:50]
lift_star = -ag_c_star

eta = eta_star
ag = ag_star
lift = lift_star
eta_t = eta_t_star
eta_tt = eta_tt_star
ag_c = ag_c_star
g = -eta_tt - ag
phi_t = np.repeat(phi_t0, ag_c_star.shape[0], axis=0)

input_dict = {
"eta": eta,
"eta_t": eta_t,
"g": g,
"ag": ag,
"ag_c": ag_c,
"lift": lift,
"phi_t": phi_t,
}

output_dict = predictor.predict(input_dict, cfg.INFER.batch_size)

# mapping data to cfg.INFER.output_keys
output_dict = {
store_key: output_dict[infer_key]
for store_key, infer_key in zip(cfg.MODEL.output_keys, output_dict.keys())
}

ppsci.visualize.save_vtu_from_dict(
"./phylstm2_pred.vtu",
{**input_dict, **output_dict},
input_dict.keys(),
cfg.MODEL.output_keys,
)


@hydra.main(version_base=None, config_path="./conf", config_name="phylstm2.yaml")
def main(cfg: DictConfig):
if cfg.mode == "train":
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
elif cfg.mode == "export":
export(cfg)
elif cfg.mode == "infer":
inference(cfg)
else:
raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'")
raise ValueError(
f"cfg.mode should in ['train', 'eval', 'export', 'infer'], but got '{cfg.mode}'"
)


if __name__ == "__main__":
Expand Down
139 changes: 138 additions & 1 deletion examples/phylstm/phylstm3.py
Original file line number Diff line number Diff line change
Expand Up @@ -346,14 +346,151 @@ def evaluate(cfg: DictConfig):
solver.eval()


def export(cfg: DictConfig):
mat = scipy.io.loadmat(cfg.DATA_FILE_PATH)
u_data = mat["target_X_tf"]
u_data = u_data.reshape([u_data.shape[0], u_data.shape[1], 1])
u_all = u_data
eta_star = u_all[0:10]
eta = eta_star
# set model
model = ppsci.arch.DeepPhyLSTM(
cfg.MODEL.input_size,
eta.shape[2],
cfg.MODEL.hidden_size,
cfg.MODEL.model_type,
)
# initialize solver
solver = ppsci.solver.Solver(
model,
pretrained_model_path=cfg.INFER.pretrained_model_path,
)
# export model
from paddle.static import InputSpec

input_spec = [
{key: InputSpec([None, 1], "float32", name=key) for key in model.input_keys},
]
solver.export(input_spec, cfg.INFER.export_path)


def inference(cfg: DictConfig):
from deploy.python_infer import pinn_predictor

predictor = pinn_predictor.PINNPredictor(cfg)

mat = scipy.io.loadmat(cfg.DATA_FILE_PATH)
t = mat["time"]
dt = 0.02
n1 = int(dt / 0.005)
t = t[::n1]

ag_data = mat["input_tf"][:, ::n1] # ag, ad, av
u_data = mat["target_X_tf"][:, ::n1]
ut_data = mat["target_Xd_tf"][:, ::n1]
utt_data = mat["target_Xdd_tf"][:, ::n1]
ag_data = ag_data.reshape([ag_data.shape[0], ag_data.shape[1], 1])
u_data = u_data.reshape([u_data.shape[0], u_data.shape[1], 1])
ut_data = ut_data.reshape([ut_data.shape[0], ut_data.shape[1], 1])
utt_data = utt_data.reshape([utt_data.shape[0], utt_data.shape[1], 1])

ag_pred = mat["input_pred_tf"][:, ::n1] # ag, ad, av
u_pred = mat["target_pred_X_tf"][:, ::n1]
ut_pred = mat["target_pred_Xd_tf"][:, ::n1]
utt_pred = mat["target_pred_Xdd_tf"][:, ::n1]
ag_pred = ag_pred.reshape([ag_pred.shape[0], ag_pred.shape[1], 1])
u_pred = u_pred.reshape([u_pred.shape[0], u_pred.shape[1], 1])
ut_pred = ut_pred.reshape([ut_pred.shape[0], ut_pred.shape[1], 1])
utt_pred = utt_pred.reshape([utt_pred.shape[0], utt_pred.shape[1], 1])

N = u_data.shape[1]
phi1 = np.concatenate(
[
np.array([-3 / 2, 2, -1 / 2]),
np.zeros([N - 3]),
]
)
temp1 = np.concatenate([-1 / 2 * np.identity(N - 2), np.zeros([N - 2, 2])], axis=1)
temp2 = np.concatenate([np.zeros([N - 2, 2]), 1 / 2 * np.identity(N - 2)], axis=1)
phi2 = temp1 + temp2
phi3 = np.concatenate(
[
np.zeros([N - 3]),
np.array([1 / 2, -2, 3 / 2]),
]
)
phi_t0 = (
1
/ dt
* np.concatenate(
[
np.reshape(phi1, [1, phi1.shape[0]]),
phi2,
np.reshape(phi3, [1, phi3.shape[0]]),
],
axis=0,
)
)
phi_t0 = np.reshape(phi_t0, [1, N, N])

ag_star = ag_data
eta_star = u_data
eta_t_star = ut_data
eta_tt_star = utt_data
ag_c_star = np.concatenate([ag_data, ag_pred[0:53]])
lift_star = -ag_c_star

eta = eta_star
ag = ag_star
lift = lift_star
eta_t = eta_t_star
eta_tt = eta_tt_star
g = -eta_tt - ag
ag_c = ag_c_star

phi_t = np.repeat(phi_t0, ag_c_star.shape[0], axis=0)

input_dict = {
"eta": eta,
"eta_t": eta_t,
"eta_tt": eta_tt,
"g": g,
"ag": ag,
"ag_c": ag_c,
"lift": lift,
"phi_t": phi_t,
}

output_dict = predictor.predict(input_dict, cfg.INFER.batch_size)

# mapping data to cfg.INFER.output_keys
output_dict = {
store_key: output_dict[infer_key]
for store_key, infer_key in zip(cfg.MODEL.output_keys, output_dict.keys())
}

ppsci.visualize.save_vtu_from_dict(
"./phylstm3_pred.vtu",
{**input_dict, **output_dict},
input_dict.keys(),
cfg.MODEL.output_keys,
)


@hydra.main(version_base=None, config_path="./conf", config_name="phylstm3.yaml")
def main(cfg: DictConfig):
if cfg.mode == "train":
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
elif cfg.mode == "export":
export(cfg)
elif cfg.mode == "infer":
inference(cfg)
else:
raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'")
raise ValueError(
f"cfg.mode should in ['train', 'eval', 'export', 'infer'], but got '{cfg.mode}'"
)


if __name__ == "__main__":
Expand Down