Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Surrogate pinns #338

Merged
merged 35 commits into from
Jun 7, 2023
Merged
Show file tree
Hide file tree
Changes from 34 commits
Commits
Show all changes
35 commits
Select commit Hold shift + click to select a range
162a21c
fix random and create demo
wangguan1995 Apr 23, 2023
7b85252
Merge branch 'develop'
wangguan1995 Apr 25, 2023
ca255c6
Reproduce Fig. 2.(a) successfully
wangguan1995 Apr 27, 2023
cfc8407
reproduce fig1 (a) and (b) successfully
wangguan1995 Apr 27, 2023
774d825
reproduce aneurysm case in paper 3.2
wangguan1995 Apr 28, 2023
4b6c285
Aneurysm converged
wangguan1995 May 4, 2023
e8b53e2
clean pipe flow code
wangguan1995 May 5, 2023
70f77ae
add main
wangguan1995 May 5, 2023
200bde2
clean code
wangguan1995 May 16, 2023
7a0de8d
merge develop
wangguan1995 May 16, 2023
7d957c9
using xvaier instead tf net initial params
wangguan1995 May 24, 2023
a406cfc
merge develop
wangguan1995 May 24, 2023
683adc7
muli opt:w
wangguan1995 May 31, 2023
9aa1279
need shuffle
wangguan1995 May 31, 2023
2cb23a3
refine by review
wangguan1995 Jun 1, 2023
5fc66e3
add wss formula
wangguan1995 Jun 2, 2023
50d6936
review fix
wangguan1995 Jun 2, 2023
67f064a
delete useless comment
wangguan1995 Jun 2, 2023
4607582
merge develop
wangguan1995 Jun 2, 2023
204c5e5
reformat pipe flow
wangguan1995 Jun 2, 2023
82e2e5d
merge new NS eqn which thinks of nu as variable
wangguan1995 Jun 2, 2023
7bef78e
reformat transform
wangguan1995 Jun 2, 2023
334c2a9
recover mlp code
wangguan1995 Jun 2, 2023
b80657a
delete blank line
wangguan1995 Jun 2, 2023
ec6f9fd
fix by reviews
wangguan1995 Jun 5, 2023
31aeea8
fix epochs
wangguan1995 Jun 5, 2023
669a0c5
delete useless lines
wangguan1995 Jun 5, 2023
2af8a3a
bug fix
wangguan1995 Jun 5, 2023
f821d82
forget to uncomment train
wangguan1995 Jun 5, 2023
1f30ad4
fix multi-learnable bug
wangguan1995 Jun 5, 2023
169759d
fix by reviews
wangguan1995 Jun 5, 2023
620e38c
fix by reviews
wangguan1995 Jun 6, 2023
76797fb
clean activation
wangguan1995 Jun 6, 2023
4d933f3
add reference
wangguan1995 Jun 6, 2023
e974416
fix by reviews
wangguan1995 Jun 7, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
379 changes: 379 additions & 0 deletions examples/aneurysm/aneurysm_flow.py
HydrogenSulfate marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -0,0 +1,379 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

# http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

删除一个空行

"""
Reference: https://github.com/Jianxun-Wang/LabelFree-DNN-Surrogate
"""

import math
HydrogenSulfate marked this conversation as resolved.
Show resolved Hide resolved
import os
import os.path as osp

import matplotlib.pyplot as plt
import numpy as np
import paddle

import ppsci
from ppsci.utils import config
from ppsci.utils import logger
from ppsci.utils import misc

if __name__ == "__main__":
args = config.parse_args()
paddle.fluid.core.set_prim_eager_enabled(True)

# set random seed for reproducibility
ppsci.utils.misc.set_random_seed(42)

# set output directory
OUTPUT_DIR = "./output_aneurysm_flow"

# initialize logger
logger.init_logger("ppsci", f"{OUTPUT_DIR}/train.log", "info")

# Physic properties
P_OUT = 0 # pressure at the outlet of pipe
P_IN = 0.1 # pressure at the inlet of pipe
NU = 1e-3
RHO = 1

# Geometry
L = 1
X_IN = 0
X_OUT = X_IN + L
R_INLET = 0.05
mu = 0.5 * (X_OUT - X_IN)
N_Y = 20

x_inital = np.linspace(X_IN, X_OUT, 100, dtype=paddle.get_default_dtype()).reshape(
100, 1
)
x_20_copy = np.tile(x_inital, (20, 1)) # duplicate 20 times of x for dataloader

SIGMA = 0.1
SCALE_START = -0.02
SCALE_END = 0

scale_initial = np.linspace(
SCALE_START, SCALE_END, 50, endpoint=True, dtype=paddle.get_default_dtype()
).reshape(50, 1)
scale = np.tile(scale_initial, (len(x_20_copy), 1))
x = np.array([np.tile(val, len(scale_initial)) for val in x_20_copy]).reshape(
len(scale), 1
)

# Axisymetric boundary
r_func = (
scale
/ math.sqrt(2 * np.pi * SIGMA**2)
* np.exp(-((x - mu) ** 2) / (2 * SIGMA**2))
)

# Visualize stenosis(scale == 0.2)
PLOT_DIR = osp.join(OUTPUT_DIR, "visu")
os.makedirs(PLOT_DIR, exist_ok=True)
y_up = (R_INLET - r_func) * np.ones_like(x)
y_down = (-R_INLET + r_func) * np.ones_like(x)
idx = np.where(scale == 0) # plot vessel which scale is 0.2 by finding its indexs
plt.figure()
plt.scatter(x[idx], y_up[idx])
plt.scatter(x[idx], y_down[idx])
plt.axis("equal")
plt.savefig(osp.join(PLOT_DIR, "idealized_stenotid_vessel"), bbox_inches="tight")

# Points and shuffle(for alignment)
y = np.zeros([len(x), 1], dtype=paddle.get_default_dtype())
for x0 in x_inital:
index = np.where(x[:, 0] == x0)[0]
# y is linear to scale, so we place linespace to get 1000 x, it coressponds to vessels
y[index] = np.linspace(
-max(y_up[index]),
max(y_up[index]),
len(index),
dtype=paddle.get_default_dtype(),
).reshape(len(index), -1)

idx = np.where(scale == 0) # plot vessel which scale is 0.2 by finding its indexs
plt.figure()
plt.scatter(x[idx], y[idx])
plt.axis("equal")
plt.savefig(osp.join(PLOT_DIR, "one_scale_sample"), bbox_inches="tight")

interior_geom = ppsci.geometry.PointCloud(
wangguan1995 marked this conversation as resolved.
Show resolved Hide resolved
interior={"x": x, "y": y, "scale": scale},
coord_keys=("x", "y", "scale"),
)
geom = {"interior": interior_geom}

def init_func(m):
if misc.typename(m) == "Linear":
ppsci.utils.initializer.kaiming_normal_(m.weight, reverse=True)

model_1 = ppsci.arch.MLP(("x", "y", "scale"), ("u",), 3, 20, "silu")
model_2 = ppsci.arch.MLP(("x", "y", "scale"), ("v",), 3, 20, "silu")
model_3 = ppsci.arch.MLP(("x", "y", "scale"), ("p",), 3, 20, "silu")
model_1.apply(init_func)
model_2.apply(init_func)
model_3.apply(init_func)

class Transform:
HydrogenSulfate marked this conversation as resolved.
Show resolved Hide resolved
def __init__(self) -> None:
pass

def input_trans(self, input):
self.input = input
return input

def output_trans_u(self, out):
x, y, scale = self.input["x"], self.input["y"], self.input["scale"]
r_func = (
scale
/ np.sqrt(2 * np.pi * SIGMA**2)
* paddle.exp(-((x - mu) ** 2) / (2 * SIGMA**2))
)
self.h = R_INLET - r_func
u = out["u"]
# The no-slip condition of velocity on the wall
return {"u": u * (self.h**2 - y**2)}

def output_trans_v(self, out):
y = self.input["y"]
v = out["v"]
# The no-slip condition of velocity on the wall
return {"v": (self.h**2 - y**2) * v}

def output_trans_p(self, out):
x = self.input["x"]
p = out["p"]
# The pressure inlet [p_in = 0.1] and outlet [p_out = 0]
return {
"p": ((P_IN - P_OUT) * (X_OUT - x) / L + (X_IN - x) * (X_OUT - x) * p)
}

transform = Transform()
model_1.register_input_transform(transform.input_trans)
model_2.register_input_transform(transform.input_trans)
model_3.register_input_transform(transform.input_trans)
model_1.register_output_transform(transform.output_trans_u)
model_2.register_output_transform(transform.output_trans_v)
model_3.register_output_transform(transform.output_trans_p)
model = ppsci.arch.ModelList((model_1, model_2, model_3))

LEARNING_RATE = 1e-3

optimizer_1 = ppsci.optimizer.Adam(
LEARNING_RATE, beta1=0.9, beta2=0.99, epsilon=1e-15
)((model_1,))
optimizer_2 = ppsci.optimizer.Adam(
LEARNING_RATE, beta1=0.9, beta2=0.99, epsilon=1e-15
)((model_2,))
optimizer_3 = ppsci.optimizer.Adam(
LEARNING_RATE, beta1=0.9, beta2=0.99, epsilon=1e-15
)((model_3,))
optimizer = ppsci.optimizer.OptimizerList((optimizer_1, optimizer_2, optimizer_3))

equation = {"NavierStokes": ppsci.equation.NavierStokes(NU, RHO, 2, False)}

BATCH_SIZE = 50

pde_constraint = ppsci.constraint.InteriorConstraint(
equation["NavierStokes"].equations,
{"continuity": 0, "momentum_x": 0, "momentum_y": 0},
geom=geom["interior"],
dataloader_cfg={
"dataset": "NamedArrayDataset",
"num_workers": 1,
"batch_size": BATCH_SIZE,
"iters_per_epoch": int(x.shape[0] / BATCH_SIZE),
"sampler": {
"name": "BatchSampler",
"shuffle": True,
"drop_last": False,
},
},
loss=ppsci.loss.MSELoss("mean"),
evenly=True,
name="EQ",
)
constraint = {pde_constraint.name: pde_constraint}

EPOCHS = 500 if not args.epochs else args.epochs

# initialize solver
HydrogenSulfate marked this conversation as resolved.
Show resolved Hide resolved
solver = ppsci.solver.Solver(
model,
constraint,
OUTPUT_DIR,
optimizer,
epochs=EPOCHS,
iters_per_epoch=int(x.shape[0] / BATCH_SIZE),
HydrogenSulfate marked this conversation as resolved.
Show resolved Hide resolved
save_freq=10,
equation=equation,
)

solver.train()

def model_predict(
x: np.ndarray, y: np.ndarray, scale: np.ndarray, solver: ppsci.solver.Solver
):
xt = paddle.to_tensor(x)
yt = paddle.to_tensor(y)
scalet = paddle.full_like(xt, scale)
input_dict = {"x": xt, "y": yt, "scale": scalet}
output_dict = solver.predict(input_dict, batch_size=100)
return {k: v.numpy() for k, v in output_dict.items()}

scale_test = np.load("./data/aneurysm_scale0005to002_eval0to002mean001_3sigma.npz")[
"scale"
]
CASE_SELECTED = [1, 151, 486]
PLOT_X = 0.8
PLOT_Y = 0.06
FONTSIZE = 14
axis_limit = [0, 1, -0.15, 0.15]
path = "./data/cases/"
HydrogenSulfate marked this conversation as resolved.
Show resolved Hide resolved
D_P = 0.1
error_u = []
error_v = []
N_CL = 200 # number of sampling points in centerline (confused about centerline, but the paper did not explain)
x_centerline = np.linspace(
X_IN, X_OUT, N_CL, dtype=paddle.get_default_dtype()
).reshape(N_CL, 1)
y_centerline = np.zeros_like(x_centerline)
for case_id in CASE_SELECTED:
scale = scale_test[case_id - 1]
data_CFD = np.load(osp.join(path, f"{case_id}CFD_contour.npz"))
x = data_CFD["x"].astype(paddle.get_default_dtype())
y = data_CFD["y"].astype(paddle.get_default_dtype())
u_cfd = data_CFD["U"].astype(paddle.get_default_dtype())
# p_cfd = data_CFD["P"].astype(paddle.get_default_dtype()) # missing data

n = len(x)
output_dict = model_predict(
x.reshape(n, 1),
y.reshape(n, 1),
np.full((n, 1), scale, dtype=paddle.get_default_dtype()),
solver,
)
u, v, p = (
output_dict["u"],
output_dict["v"],
output_dict["p"],
)
w = np.zeros_like(u)
u_vec = np.concatenate([u, v, w], axis=1)
error_u.append(
np.linalg.norm(u_vec[:, 0] - u_cfd[:, 0]) / (D_P * len(u_vec[:, 0]))
)
error_v.append(
np.linalg.norm(u_vec[:, 1] - u_cfd[:, 1]) / (D_P * len(u_vec[:, 0]))
)
# error_p = np.linalg.norm(p - p_cfd) / (D_P * D_P)

# Streamwise velocity component u
plt.figure()
plt.subplot(212)
plt.scatter(x, y, c=u_vec[:, 0], vmin=min(u_cfd[:, 0]), vmax=max(u_cfd[:, 0]))
plt.text(PLOT_X, PLOT_Y, r"DNN", {"color": "b", "fontsize": FONTSIZE})
plt.axis(axis_limit)
plt.colorbar()
plt.subplot(211)
plt.scatter(x, y, c=u_cfd[:, 0], vmin=min(u_cfd[:, 0]), vmax=max(u_cfd[:, 0]))
plt.colorbar()
plt.text(PLOT_X, PLOT_Y, r"CFD", {"color": "b", "fontsize": FONTSIZE})
plt.axis(axis_limit)
plt.savefig(
osp.join(PLOT_DIR, f"{case_id}_scale_{scale}_uContour_test.png"),
bbox_inches="tight",
)

# Spanwise velocity component v
plt.figure()
plt.subplot(212)
plt.scatter(x, y, c=u_vec[:, 1], vmin=min(u_cfd[:, 1]), vmax=max(u_cfd[:, 1]))
plt.text(PLOT_X, PLOT_Y, r"DNN", {"color": "b", "fontsize": FONTSIZE})
plt.axis(axis_limit)
plt.colorbar()
plt.subplot(211)
plt.scatter(x, y, c=u_cfd[:, 1], vmin=min(u_cfd[:, 1]), vmax=max(u_cfd[:, 1]))
plt.colorbar()
plt.text(PLOT_X, PLOT_Y, r"CFD", {"color": "b", "fontsize": FONTSIZE})
plt.axis(axis_limit)
plt.savefig(
osp.join(PLOT_DIR, f"{case_id}_scale_{scale}_vContour_test.png"),
bbox_inches="tight",
)
plt.close("all")

# Centerline wall shear profile tau_c (downside)
data_CFD_wss = np.load(osp.join(path, f"{case_id}CFD_wss.npz"))
x_inital = data_CFD_wss["x"]
wall_shear_mag_up = data_CFD_wss["wss"]

D_H = 0.001 # The spanwise distance is approximately the height of the wall
r_cl = (
scale
/ np.sqrt(2 * np.pi * SIGMA**2)
* np.exp(-((x_centerline - mu) ** 2) / (2 * SIGMA**2))
)
y_wall = (-R_INLET + D_H) * np.ones_like(x_centerline) + r_cl
output_dict_wss = model_predict(
x_centerline,
y_wall,
np.full((N_CL, 1), scale, dtype=paddle.get_default_dtype()),
solver,
)
v_cl_total = np.zeros_like(
x_centerline
) # assuming normal velocity along the wall is zero
u_cl = output_dict_wss["u"]
v_cl = output_dict_wss["v"]
v_cl_total = np.sqrt(u_cl**2 + v_cl**2)
tau_c = NU * v_cl_total / D_H

plt.figure()
plt.plot(
x_inital,
wall_shear_mag_up,
label="CFD",
color="darkblue",
linestyle="-",
lw=3.0,
alpha=1.0,
)
plt.plot(
x_inital,
tau_c,
label="DNN",
color="red",
linestyle="--",
dashes=(5, 5),
lw=2.0,
alpha=1.0,
)
plt.xlabel(r"x", fontsize=16)
plt.ylabel(r"$\tau_{c}$", fontsize=16)
plt.legend(prop={"size": 16})
plt.savefig(
osp.join(PLOT_DIR, f"{case_id}_nu__{scale}_wallshear_test.png"),
bbox_inches="tight",
)
plt.close("all")
logger.info(
f"Table 1 : Aneurysm - Geometry error u : {sum(error_u) / len(error_u): .3e}"
)
logger.info(
f"Table 1 : Aneurysm - Geometry error v : {sum(error_v) / len(error_v): .3e}"
)
Loading