Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add mathjax expression for equations and fix some code #361

Merged
merged 4 commits into from
Jun 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ppsci/arch/mlp.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ class MLP(base.Arch):
activation (str, optional): Name of activation function. Defaults to "tanh".
skip_connection (bool, optional): Whether to use skip connection. Defaults to False.
weight_norm (bool, optional): Whether to apply weight norm on parameter(s). Defaults to False.
input_dim (Optional[int], optional): Number of input's dimension. Defaults to None.
input_dim (Optional[int]): Number of input's dimension. Defaults to None.
Examples:
>>> import ppsci
Expand Down
4 changes: 2 additions & 2 deletions ppsci/autodiff/ad.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,12 +171,12 @@ def __call__(
Args:
ys (paddle.Tensor): Output tensor.
xs (paddle.Tensor): Input tensor.
component (Optional[int], optional): If `y` has the shape (batch_size, dim_y > 1), then `y[:, component]`
component (Optional[int]): If `y` has the shape (batch_size, dim_y > 1), then `y[:, component]`
is used to compute the Hessian. Do not use if `y` has the shape (batch_size,
1). Defaults to None.
i (int, optional): i-th input variable. Defaults to 0.
j (int, optional): j-th input variable. Defaults to 0.
grad_y (Optional[paddle.Tensor], optional): The gradient of `y` w.r.t. `xs`. Provide `grad_y` if known to avoid
grad_y (Optional[paddle.Tensor]): The gradient of `y` w.r.t. `xs`. Provide `grad_y` if known to avoid
duplicate computation. Defaults to None.
Returns:
Expand Down
6 changes: 5 additions & 1 deletion ppsci/equation/pde/biharmonic.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,11 @@


class Biharmonic(base.PDE):
"""Class for biharmonic equation.
r"""Class for biharmonic equation.
$$
\nabla^4 \varphi = \dfrac{q}{D}
$$
Args:
dim (int): Dimension of equation.
Expand Down
6 changes: 5 additions & 1 deletion ppsci/equation/pde/laplace.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,11 @@


class Laplace(base.PDE):
"""Class for laplace equation.
r"""Class for laplace equation.
$$
\nabla^2 \varphi = 0
$$
Args:
dim (int): Dimension of equation.
Expand Down
18 changes: 16 additions & 2 deletions ppsci/equation/pde/linear_elasticity.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,15 +20,29 @@


class LinearElasticity(base.PDE):
"""Linear elasticity equations.
r"""Linear elasticity equations.
Use either (E, nu) or (lambda_, mu) to define the material properties.
$$
\begin{cases}
stress\_disp_{xx} = \lambda(\dfrac{\partial u}{\partial x} + \dfrac{\partial v}{\partial y} + \dfrac{\partial w}{\partial z}) + 2\mu \dfrac{\partial u}{\partial x} - \sigma_{xx} \\
stress\_disp_{yy} = \lambda(\dfrac{\partial u}{\partial x} + \dfrac{\partial v}{\partial y} + \dfrac{\partial w}{\partial z}) + 2\mu \dfrac{\partial v}{\partial y} - \sigma_{yy} \\
stress\_disp_{zz} = \lambda(\dfrac{\partial u}{\partial x} + \dfrac{\partial v}{\partial y} + \dfrac{\partial w}{\partial z}) + 2\mu \dfrac{\partial w}{\partial z} - \sigma_{zz} \\
traction_{x} = \mathbf{n}_x \sigma_{xx} + \mathbf{n}_y \sigma_{xy} + \mathbf{n}_z \sigma_{xz} \\
traction_{y} = \mathbf{n}_y \sigma_{yx} + \mathbf{n}_y \sigma_{yy} + \mathbf{n}_z \sigma_{yz} \\
traction_{z} = \mathbf{n}_z \sigma_{zx} + \mathbf{n}_y \sigma_{zy} + \mathbf{n}_z \sigma_{zz} \\
navier_{x} = \rho(\dfrac{\partial^2 u}{\partial t}) - (\lambda + \mu)(\dfrac{\partial^2 u}{\partial x^2}+\dfrac{\partial^2 v}{\partial y \partial x} + \dfrac{\partial^2 w}{\partial z \partial x}) - \mu(\dfrac{\partial^2 u}{\partial x^2} + \dfrac{\partial^2 u}{\partial y^2} + \dfrac{\partial^2 u}{\partial z^2}) \\
navier_{y} = \rho(\dfrac{\partial^2 v}{\partial t}) - (\lambda + \mu)(\dfrac{\partial^2 v}{\partial x \partial y}+\dfrac{\partial^2 v}{\partial y^2} + \dfrac{\partial^2 w}{\partial z \partial y}) - \mu(\dfrac{\partial^2 v}{\partial x^2} + \dfrac{\partial^2 v}{\partial y^2} + \dfrac{\partial^2 v}{\partial z^2}) \\
navier_{z} = \rho(\dfrac{\partial^2 w}{\partial t}) - (\lambda + \mu)(\dfrac{\partial^2 w}{\partial x \partial z}+\dfrac{\partial^2 v}{\partial y \partial z} + \dfrac{\partial^2 w}{\partial z^2}) - \mu(\dfrac{\partial^2 w}{\partial x^2} + \dfrac{\partial^2 w}{\partial y^2} + \dfrac{\partial^2 w}{\partial z^2}) \\
\end{cases}
$$
Args:
E (Optional[float]): The Young's modulus. Defaults to None.
nu (Optional[float]): The Poisson's ratio. Defaults to None.
lambda_ (Optional[float]): Lamé's first parameter. Defaults to None.
mu (Optional[float]): Lamé's second parameter (shear modulus). Defaults to None.
rho (float, optional): Mass density.. Defaults to 1.
rho (float, optional): Mass density. Defaults to 1.
dim (int, optional): Dimension of the linear elasticity (2 or 3). Defaults to 3.
time (bool, optional): Whether contains time data. Defaults to False.
Expand Down
38 changes: 31 additions & 7 deletions ppsci/equation/pde/navier_stokes.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,34 @@


class NavierStokes(base.PDE):
"""Class for navier-stokes equation.
r"""Class for navier-stokes equation.
$$
\begin{cases}
\dfrac{\partial u}{\partial x} + \dfrac{\partial v}{\partial y} + \dfrac{\partial w}{\partial z} = 0 \\
\dfrac{\partial u}{\partial t} + u\dfrac{\partial u}{\partial x} + v\dfrac{\partial u}{\partial y} + w\dfrac{\partial w}{\partial z} =
- \dfrac{1}{\rho}\dfrac{\partial p}{\partial x}
+ \nu(
\dfrac{\partial ^2 u}{\partial x ^2}
+ \dfrac{\partial ^2 u}{\partial y ^2}
+ \dfrac{\partial ^2 u}{\partial z ^2}
) \\
\dfrac{\partial v}{\partial t} + u\dfrac{\partial v}{\partial x} + v\dfrac{\partial v}{\partial y} + w\dfrac{\partial w}{\partial z} =
- \dfrac{1}{\rho}\dfrac{\partial p}{\partial y}
+ \nu(
\dfrac{\partial ^2 v}{\partial x ^2}
+ \dfrac{\partial ^2 v}{\partial y ^2}
+ \dfrac{\partial ^2 v}{\partial z ^2}
) \\
\dfrac{\partial w}{\partial t} + u\dfrac{\partial w}{\partial x} + v\dfrac{\partial w}{\partial y} + w\dfrac{\partial w}{\partial z} =
- \dfrac{1}{\rho}\dfrac{\partial p}{\partial z}
+ \nu(
\dfrac{\partial ^2 w}{\partial x ^2}
+ \dfrac{\partial ^2 w}{\partial y ^2}
+ \dfrac{\partial ^2 w}{\partial z ^2}
) \\
\end{cases}
$$
Args:
nu (float): Dynamic viscosity.
Expand All @@ -43,8 +70,7 @@ def continuity_compute_func(out):
u, v = out["u"], out["v"]
continuity = jacobian(u, x) + jacobian(v, y)
if self.dim == 3:
z = out["z"]
w = out["w"]
z, w = out["z"], out["w"]
continuity += jacobian(w, z)
return continuity

Expand All @@ -64,8 +90,7 @@ def momentum_x_compute_func(out):
t = out["t"]
momentum_x += jacobian(u, t)
if self.dim == 3:
z = out["z"]
w = out["w"]
z, w = out["z"], out["w"]
momentum_x += w * jacobian(u, z)
momentum_x -= nu / rho * hessian(u, z)
return momentum_x
Expand All @@ -86,8 +111,7 @@ def momentum_y_compute_func(out):
t = out["t"]
momentum_y += jacobian(v, t)
if self.dim == 3:
z = out["z"]
w = out["w"]
z, w = out["z"], out["w"]
momentum_y += w * jacobian(v, z)
momentum_y -= nu / rho * hessian(v, z)
return momentum_y
Expand Down
6 changes: 5 additions & 1 deletion ppsci/equation/pde/normal_dot_vec.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,11 @@


class NormalDotVec(base.PDE):
"""NormalDotVec.
r"""NormalDotVec.
$$
\mathbf{n} \cdot \mathbf{v} = 0
$$
Args:
velocity_keys (Tuple[str, ...]): Keys for velocity(ies).
Expand Down
6 changes: 5 additions & 1 deletion ppsci/equation/pde/poisson.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,11 @@


class Poisson(base.PDE):
"""Class for poisson equation.
r"""Class for poisson equation.
$$
\nabla^2 \varphi = C
$$
Args:
dim (int): Dimension of equation.
Expand Down
10 changes: 7 additions & 3 deletions ppsci/equation/pde/viv.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,11 @@


class Vibration(base.PDE):
"""Vortex induced vibration equation.
r"""Vortex induced vibration equation.
$$
\rho \dfrac{\partial^2 \eta}{\partial t^2} + e^{k1} \dfrac{\partial \eta}{\partial t} + e^{k2} \eta = f
$$
Args:
rho (float): Generalized mass.
Expand All @@ -37,12 +41,12 @@ def __init__(self, rho: float, k1: float, k2: float):
super().__init__()
self.rho = rho
self.k1 = paddle.create_parameter(
shape=[1],
shape=[],
dtype=paddle.get_default_dtype(),
default_initializer=initializer.Constant(k1),
)
self.k2 = paddle.create_parameter(
shape=[1],
shape=[],
dtype=paddle.get_default_dtype(),
default_initializer=initializer.Constant(k2),
)
Expand Down
2 changes: 1 addition & 1 deletion ppsci/geometry/mesh.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ def scale(self, scale, center=(0, 0, 0)):
open3d.utility.Vector3dVector(vertices),
open3d.utility.Vector3iVector(faces),
)
open3d_mesh.scale(scale, center)
open3d_mesh = open3d_mesh.scale(scale, center)
self.py_mesh = pymesh.form_mesh(
np.asarray(open3d_mesh.vertices, dtype=paddle.get_default_dtype()), faces
)
Expand Down
6 changes: 3 additions & 3 deletions ppsci/loss/integral.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,13 +28,13 @@ class IntegralLoss(base.Loss):
$$
L =
\begin{cases}
\dfrac{1}{N} \Vert \mathbf{s} \circ \mathbf{x} - \mathbf{y} \Vert_2^2, & \text{if reduction='mean'} \\
\Vert \mathbf{s} \circ \mathbf{x} - \mathbf{y} \Vert_2^2, & \text{if reduction='sum'}
\dfrac{1}{N} \Vert \displaystyle\sum_{i=1}^{M}{\mathbf{s}_i \cdot \mathbf{x}_i} - \mathbf{y} \Vert_2^2, & \text{if reduction='mean'} \\
\Vert \displaystyle\sum_{i=0}^{M}{\mathbf{s}_i \cdot \mathbf{x}_i} - \mathbf{y} \Vert_2^2, & \text{if reduction='sum'}
\end{cases}
$$
$$
\mathbf{x}, \mathbf{y}, \mathbf{s} \in \mathcal{R}^{N}
\mathbf{x}, \mathbf{s} \in \mathcal{R}^{M \times N}, \mathbf{y} \in \mathcal{R}^{N}
$$
Args:
Expand Down