-
Notifications
You must be signed in to change notification settings - Fork 178
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
为equatiohn/pde/linear_elasticity.py添加单元测试 #416
Changes from 6 commits
3ac988e
49ddb06
0b96149
236a5f9
3ef9c5e
0665d60
83d63e7
37defc8
2104ccd
6fc9381
0123570
519216c
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,337 @@ | ||
import paddle | ||
import pytest | ||
from paddle import nn | ||
|
||
from ppsci import equation | ||
|
||
|
||
def jacobian(y: paddle.Tensor, x: paddle.Tensor) -> paddle.Tensor: | ||
return paddle.grad(y, x, create_graph=True)[0] | ||
|
||
|
||
def hessian(y: paddle.Tensor, x: paddle.Tensor) -> paddle.Tensor: | ||
return jacobian(jacobian(y, x), x) | ||
|
||
|
||
def stress_disp_xx_expected_result(u, v, w, x, y, z, lambda_, mu, dim, sigma_xx): | ||
stress_disp_xx = ( | ||
lambda_ * (jacobian(u, x) + jacobian(v, y)) + 2 * mu * jacobian(u, x) - sigma_xx | ||
) | ||
if dim == 3: | ||
stress_disp_xx += lambda_ * jacobian(w, z) | ||
return stress_disp_xx | ||
|
||
|
||
def stress_disp_yy_expected_result(u, v, w, x, y, z, lambda_, mu, dim, sigma_yy): | ||
stress_disp_yy = ( | ||
lambda_ * (jacobian(u, x) + jacobian(v, y)) + 2 * mu * jacobian(v, y) - sigma_yy | ||
) | ||
if dim == 3: | ||
stress_disp_yy += lambda_ * jacobian(w, z) | ||
return stress_disp_yy | ||
|
||
|
||
def stress_disp_zz_expected_result(u, v, w, x, y, z, lambda_, mu, sigma_zz): | ||
stress_disp_zz = ( | ||
lambda_ * (jacobian(u, x) + jacobian(v, y) + jacobian(w, z)) | ||
+ 2 * mu * jacobian(w, z) | ||
- sigma_zz | ||
) | ||
return stress_disp_zz | ||
|
||
|
||
def stress_disp_xy_expected_result(u, v, x, y, mu, sigma_xy): | ||
stress_disp_xy = mu * (jacobian(u, y) + jacobian(v, x)) - sigma_xy | ||
return stress_disp_xy | ||
|
||
|
||
def stress_disp_xz_expected_result(u, w, x, z, mu, sigma_xz): | ||
stress_disp_xz = mu * (jacobian(u, z) + jacobian(w, x)) - sigma_xz | ||
return stress_disp_xz | ||
|
||
|
||
def stress_disp_yz_expected_result(v, w, y, z, mu, sigma_yz): | ||
stress_disp_yz = mu * (jacobian(v, z) + jacobian(w, y)) - sigma_yz | ||
return stress_disp_yz | ||
|
||
|
||
def equilibrium_x_expected_result( | ||
u, x, y, z, t, rho, dim, time, sigma_xx, sigma_xy, sigma_xz=None | ||
): | ||
equilibrium_x = -jacobian(sigma_xx, x) - jacobian(sigma_xy, y) | ||
if dim == 3: | ||
equilibrium_x -= jacobian(sigma_xz, z) | ||
if time: | ||
equilibrium_x += rho * hessian(u, t) | ||
return equilibrium_x | ||
|
||
|
||
def equilibrium_y_expected_result( | ||
v, x, y, z, t, rho, dim, time, sigma_yy, sigma_xy, sigma_yz=None | ||
): | ||
equilibrium_y = -jacobian(sigma_xy, x) - jacobian(sigma_yy, y) | ||
if dim == 3: | ||
equilibrium_y -= jacobian(sigma_yz, z) | ||
if time: | ||
equilibrium_y += rho * hessian(v, t) | ||
return equilibrium_y | ||
|
||
|
||
def equilibrium_z_expected_result( | ||
w, x, y, z, t, rho, time, sigma_xz, sigma_yz, sigma_zz | ||
): | ||
equilibrium_z = ( | ||
-jacobian(sigma_xz, x) - jacobian(sigma_yz, y) - jacobian(sigma_zz, z) | ||
) | ||
if time: | ||
equilibrium_z += rho * hessian(w, t) | ||
return equilibrium_z | ||
|
||
|
||
def traction_x_expected_result( | ||
normal_x, normal_y, sigma_xx, sigma_xy, normal_z=None, sigma_xz=None | ||
): | ||
traction_x = normal_x * sigma_xx + normal_y * sigma_xy | ||
if normal_z is not None and sigma_xz is not None: | ||
traction_x += normal_z * sigma_xz | ||
return traction_x | ||
|
||
|
||
def traction_y_expected_result( | ||
normal_x, normal_y, sigma_xy, sigma_yy, normal_z=None, sigma_yz=None | ||
): | ||
traction_y = normal_x * sigma_xy + normal_y * sigma_yy | ||
if normal_z is not None and sigma_yz is not None: | ||
traction_y += normal_z * sigma_yz | ||
return traction_y | ||
|
||
|
||
def traction_z_expected_result( | ||
normal_x, normal_y, normal_z, sigma_xz, sigma_yz, sigma_zz | ||
): | ||
traction_z = normal_x * sigma_xz + normal_y * sigma_yz + normal_z * sigma_zz | ||
return traction_z | ||
|
||
|
||
def navier_x_expected_result(u, v, w, x, y, z, t, lambda_, mu, rho, dim, time): | ||
duxvywz = jacobian(u, x) + jacobian(v, y) | ||
duxxuyyuzz = hessian(u, x) + hessian(u, y) | ||
if dim == 3: | ||
duxvywz += jacobian(w, z) | ||
duxxuyyuzz += hessian(u, z) | ||
navier_x = -(lambda_ + mu) * jacobian(duxvywz, x) - mu * duxxuyyuzz | ||
if time: | ||
navier_x += rho * hessian(u, t) | ||
return navier_x | ||
|
||
|
||
def navier_y_expected_result(u, v, w, x, y, z, t, lambda_, mu, rho, dim, time): | ||
duxvywz = jacobian(u, x) + jacobian(v, y) | ||
dvxxvyyvzz = hessian(v, x) + hessian(v, y) | ||
if dim == 3: | ||
duxvywz += jacobian(w, z) | ||
dvxxvyyvzz += hessian(v, z) | ||
navier_y = -(lambda_ + mu) * jacobian(duxvywz, y) - mu * dvxxvyyvzz | ||
if time: | ||
navier_y += rho * hessian(v, t) | ||
return navier_y | ||
|
||
|
||
def navier_z_expected_result(u, v, w, x, y, z, t, lambda_, mu, rho, time): | ||
duxvywz = jacobian(u, x) + jacobian(v, y) + jacobian(w, z) | ||
dwxxvyyvzz = hessian(w, x) + hessian(w, y) + hessian(w, z) | ||
navier_z = -(lambda_ + mu) * jacobian(duxvywz, z) - mu * dwxxvyyvzz | ||
if time: | ||
navier_z += rho * hessian(w, t) | ||
return navier_z | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"E, nu, lambda_, mu, rho, dim, time", | ||
[ | ||
(None, None, 1e3, 1e3, 1, 2, False), | ||
(None, None, 1e3, 1e3, 1, 2, True), | ||
(None, None, 1e3, 1e3, 1, 3, False), | ||
(None, None, 1e3, 1e3, 1, 3, True), | ||
], | ||
) | ||
def test_linear_elasticity(E, nu, lambda_, mu, rho, dim, time): | ||
batch_size = 13 | ||
x = paddle.randn([batch_size, 1]) | ||
y = paddle.randn([batch_size, 1]) | ||
z = paddle.randn([batch_size, 1]) if dim == 3 else None | ||
t = paddle.randn([batch_size, 1]) if time else None | ||
normal_x = paddle.randn([batch_size, 1]) | ||
normal_y = paddle.randn([batch_size, 1]) | ||
normal_z = paddle.randn([batch_size, 1]) if dim == 3 else None | ||
|
||
x.stop_gradient = False | ||
y.stop_gradient = False | ||
if dim == 3: | ||
z.stop_gradient = False | ||
if time: | ||
t.stop_gradient = False | ||
|
||
input_data = paddle.concat([x, y], axis=1) | ||
if dim == 3: | ||
input_data = paddle.concat([input_data, z], axis=1) | ||
if time: | ||
input_data = paddle.concat([input_data, t], axis=1) | ||
|
||
model = nn.Sequential( | ||
nn.Linear(input_data.shape[1], 9 if dim == 3 else 5), | ||
nn.Tanh(), | ||
) | ||
|
||
output = model(input_data) | ||
|
||
u, v, *other_outputs = paddle.split(output, num_or_sections=output.shape[1], axis=1) | ||
|
||
if dim == 3: | ||
w = other_outputs[0] | ||
sigma_xx, sigma_xy, sigma_xz, sigma_yy, sigma_yz, sigma_zz = other_outputs[1:] | ||
else: | ||
w = None | ||
sigma_xx, sigma_xy, sigma_yy = other_outputs[0:3] | ||
sigma_xz, sigma_yz, sigma_zz = None, None, None | ||
|
||
expected_stress_disp_xx = stress_disp_xx_expected_result( | ||
u, v, w, x, y, z, lambda_, mu, dim, sigma_xx | ||
) | ||
expected_stress_disp_yy = stress_disp_yy_expected_result( | ||
u, v, w, x, y, z, lambda_, mu, dim, sigma_yy | ||
) | ||
expected_stress_disp_xy = stress_disp_xy_expected_result(u, v, x, y, mu, sigma_xy) | ||
expected_equilibrium_x = equilibrium_x_expected_result( | ||
u, x, y, z, t, rho, dim, time, sigma_xx, sigma_xy, sigma_xz | ||
) | ||
expected_equilibrium_y = equilibrium_y_expected_result( | ||
v, x, y, z, t, rho, dim, time, sigma_yy, sigma_xy, sigma_yz | ||
) | ||
expected_traction_x = traction_x_expected_result( | ||
normal_x, normal_y, sigma_xx, sigma_xy, normal_z, sigma_xz | ||
) | ||
expected_traction_y = traction_y_expected_result( | ||
normal_x, normal_y, sigma_xy, sigma_yy, normal_z, sigma_yz | ||
) | ||
expected_navier_x = navier_x_expected_result( | ||
u, v, w, x, y, z, t, lambda_, mu, rho, dim, time | ||
) | ||
expected_navier_y = navier_y_expected_result( | ||
u, v, w, x, y, z, t, lambda_, mu, rho, dim, time | ||
) | ||
if dim == 3: | ||
expected_stress_disp_zz = stress_disp_zz_expected_result( | ||
u, v, w, x, y, z, lambda_, mu, sigma_zz | ||
) | ||
expected_stress_disp_xz = stress_disp_xz_expected_result( | ||
u, w, x, z, mu, sigma_xz | ||
) | ||
expected_stress_disp_yz = stress_disp_yz_expected_result( | ||
v, w, y, z, mu, sigma_yz | ||
) | ||
expected_equilibrium_z = equilibrium_z_expected_result( | ||
w, x, y, z, t, rho, time, sigma_xz, sigma_yz, sigma_zz | ||
) | ||
expected_navier_z = navier_z_expected_result( | ||
u, v, w, x, y, z, t, lambda_, mu, rho, time | ||
) | ||
expected_traction_z = traction_z_expected_result( | ||
normal_x, normal_y, normal_z, sigma_xz, sigma_yz, sigma_zz | ||
) | ||
|
||
linear_elasticity = equation.LinearElasticity( | ||
E=None, nu=None, lambda_=lambda_, mu=mu, rho=rho, dim=dim, time=time | ||
) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 虽然E和nu暂时只会是None,但这里的E和nu应该用传进来的参数填写吧 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 好的 |
||
|
||
data_dict = { | ||
"x": x, | ||
"y": y, | ||
"u": u, | ||
"v": v, | ||
"z": z, | ||
"w": w, | ||
"t": t, | ||
"sigma_xx": sigma_xx, | ||
"sigma_xy": sigma_xy, | ||
"sigma_xz": sigma_xz, | ||
"sigma_yy": sigma_yy, | ||
"sigma_yz": sigma_yz, | ||
"sigma_zz": sigma_zz, | ||
"normal_x": normal_x, | ||
"normal_y": normal_y, | ||
"normal_z": normal_z, | ||
} | ||
|
||
test_output_names = [ | ||
"stress_disp_xx", | ||
"stress_disp_yy", | ||
"stress_disp_xy", | ||
"equilibrium_x", | ||
"equilibrium_y", | ||
"navier_x", | ||
"navier_y", | ||
"traction_x", | ||
"traction_y", | ||
] | ||
test_output = {} | ||
for name in test_output_names: | ||
test_output[name] = linear_elasticity.equations[name](data_dict) | ||
test_output_names = [ | ||
"stress_disp_xx", | ||
"stress_disp_yy", | ||
"stress_disp_xy", | ||
"equilibrium_x", | ||
"equilibrium_y", | ||
"navier_x", | ||
"navier_y", | ||
"traction_x", | ||
"traction_y", | ||
] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这里为什么要给 test_output_names 赋值两次呢 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 眼花了 |
||
|
||
if dim == 3: | ||
test_output_names.extend( | ||
[ | ||
"stress_disp_zz", | ||
"stress_disp_xz", | ||
"stress_disp_yz", | ||
"equilibrium_z", | ||
"navier_z", | ||
"traction_z", | ||
] | ||
) | ||
|
||
test_output = {} | ||
for name in test_output_names: | ||
test_output[name] = linear_elasticity.equations[name](data_dict) | ||
HydrogenSulfate marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
expected_output = { | ||
"stress_disp_xx": expected_stress_disp_xx, | ||
"stress_disp_yy": expected_stress_disp_yy, | ||
"stress_disp_xy": expected_stress_disp_xy, | ||
"equilibrium_x": expected_equilibrium_x, | ||
"equilibrium_y": expected_equilibrium_y, | ||
"navier_x": expected_navier_x, | ||
"navier_y": expected_navier_y, | ||
"traction_x": expected_traction_x, | ||
"traction_y": expected_traction_y, | ||
} | ||
|
||
if dim == 3: | ||
expected_output.update( | ||
{ | ||
"stress_disp_zz": expected_stress_disp_zz, | ||
"stress_disp_xz": expected_stress_disp_xz, | ||
"stress_disp_yz": expected_stress_disp_yz, | ||
"equilibrium_z": expected_equilibrium_z, | ||
"navier_z": expected_navier_z, | ||
"traction_z": expected_traction_z, | ||
} | ||
) | ||
|
||
for name in test_output_names: | ||
assert paddle.allclose(expected_output[name], test_output[name]) | ||
|
||
|
||
if __name__ == "__main__": | ||
pytest.main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
PaddleScience里,时间数据t如果有的话,会排在通道维度的最前面,
input_data = paddle.concat([t, input_data], axis=1)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
okok
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
感觉你应该理解错了,我的意思是 时间t和其他通道的数据堆叠在一起时,应该排在第一个通道上……
也就是第 177行代码应该改成
input_data = paddle.concat([t, input_data], axis=1)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
哦哦好的