Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

为equatiohn/pde/linear_elasticity.py添加单元测试 #416

Merged
merged 12 commits into from
Jul 10, 2023
322 changes: 322 additions & 0 deletions test/equation/test_linear_elasticity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,322 @@
import paddle
import pytest
from paddle import nn

from ppsci import equation


def jacobian(y: paddle.Tensor, x: paddle.Tensor) -> paddle.Tensor:
return paddle.grad(y, x, create_graph=True)[0]


def hessian(y: paddle.Tensor, x: paddle.Tensor) -> paddle.Tensor:
return jacobian(jacobian(y, x), x)


def stress_disp_xx_expected_result(u, v, w, x, y, z, lambda_, mu, dim, sigma_xx):
stress_disp_xx = (
lambda_ * (jacobian(u, x) + jacobian(v, y)) + 2 * mu * jacobian(u, x) - sigma_xx
)
if dim == 3:
stress_disp_xx += lambda_ * jacobian(w, z)
return stress_disp_xx


def stress_disp_yy_expected_result(u, v, w, x, y, z, lambda_, mu, dim, sigma_yy):
stress_disp_yy = (
lambda_ * (jacobian(u, x) + jacobian(v, y)) + 2 * mu * jacobian(v, y) - sigma_yy
)
if dim == 3:
stress_disp_yy += lambda_ * jacobian(w, z)
return stress_disp_yy


def stress_disp_zz_expected_result(u, v, w, x, y, z, lambda_, mu, sigma_zz):
stress_disp_zz = (
lambda_ * (jacobian(u, x) + jacobian(v, y) + jacobian(w, z))
+ 2 * mu * jacobian(w, z)
- sigma_zz
)
return stress_disp_zz


def stress_disp_xy_expected_result(u, v, x, y, mu, sigma_xy):
stress_disp_xy = mu * (jacobian(u, y) + jacobian(v, x)) - sigma_xy
return stress_disp_xy


def stress_disp_xz_expected_result(u, w, x, z, mu, sigma_xz):
stress_disp_xz = mu * (jacobian(u, z) + jacobian(w, x)) - sigma_xz
return stress_disp_xz


def stress_disp_yz_expected_result(v, w, y, z, mu, sigma_yz):
stress_disp_yz = mu * (jacobian(v, z) + jacobian(w, y)) - sigma_yz
return stress_disp_yz


def equilibrium_x_expected_result(
u, x, y, z, t, rho, dim, time, sigma_xx, sigma_xy, sigma_xz=None
):
equilibrium_x = -jacobian(sigma_xx, x) - jacobian(sigma_xy, y)
if dim == 3:
equilibrium_x -= jacobian(sigma_xz, z)
if time:
equilibrium_x += rho * hessian(u, t)
return equilibrium_x


def equilibrium_y_expected_result(
v, x, y, z, t, rho, dim, time, sigma_yy, sigma_xy, sigma_yz=None
):
equilibrium_y = -jacobian(sigma_xy, x) - jacobian(sigma_yy, y)
if dim == 3:
equilibrium_y -= jacobian(sigma_yz, z)
if time:
equilibrium_y += rho * hessian(v, t)
return equilibrium_y


def equilibrium_z_expected_result(
w, x, y, z, t, rho, time, sigma_xz, sigma_yz, sigma_zz
):
equilibrium_z = (
-jacobian(sigma_xz, x) - jacobian(sigma_yz, y) - jacobian(sigma_zz, z)
)
if time:
equilibrium_z += rho * hessian(w, t)
return equilibrium_z


def traction_x_expected_result(
normal_x, normal_y, sigma_xx, sigma_xy, normal_z=None, sigma_xz=None
):
traction_x = normal_x * sigma_xx + normal_y * sigma_xy
if normal_z is not None and sigma_xz is not None:
traction_x += normal_z * sigma_xz
return traction_x


def traction_y_expected_result(
normal_x, normal_y, sigma_xy, sigma_yy, normal_z=None, sigma_yz=None
):
traction_y = normal_x * sigma_xy + normal_y * sigma_yy
if normal_z is not None and sigma_yz is not None:
traction_y += normal_z * sigma_yz
return traction_y


def traction_z_expected_result(
normal_x, normal_y, normal_z, sigma_xz, sigma_yz, sigma_zz
):
traction_z = normal_x * sigma_xz + normal_y * sigma_yz + normal_z * sigma_zz
return traction_z


def navier_x_expected_result(u, v, w, x, y, z, t, lambda_, mu, rho, dim, time):
duxvywz = jacobian(u, x) + jacobian(v, y)
duxxuyyuzz = hessian(u, x) + hessian(u, y)
if dim == 3:
duxvywz += jacobian(w, z)
duxxuyyuzz += hessian(u, z)
navier_x = -(lambda_ + mu) * jacobian(duxvywz, x) - mu * duxxuyyuzz
if time:
navier_x += rho * hessian(u, t)
return navier_x


def navier_y_expected_result(u, v, w, x, y, z, t, lambda_, mu, rho, dim, time):
duxvywz = jacobian(u, x) + jacobian(v, y)
dvxxvyyvzz = hessian(v, x) + hessian(v, y)
if dim == 3:
duxvywz += jacobian(w, z)
dvxxvyyvzz += hessian(v, z)
navier_y = -(lambda_ + mu) * jacobian(duxvywz, y) - mu * dvxxvyyvzz
if time:
navier_y += rho * hessian(v, t)
return navier_y


def navier_z_expected_result(u, v, w, x, y, z, t, lambda_, mu, rho, time):
duxvywz = jacobian(u, x) + jacobian(v, y) + jacobian(w, z)
dwxxvyyvzz = hessian(w, x) + hessian(w, y) + hessian(w, z)
navier_z = -(lambda_ + mu) * jacobian(duxvywz, z) - mu * dwxxvyyvzz
if time:
navier_z += rho * hessian(w, t)
return navier_z


@pytest.mark.parametrize(
"E, nu, lambda_, mu, rho, dim, time",
[
(None, None, 1e3, 1e3, 1, 2, False),
(None, None, 1e3, 1e3, 1, 2, True),
(None, None, 1e3, 1e3, 1, 3, False),
(None, None, 1e3, 1e3, 1, 3, True),
],
)
def test_linear_elasticity(E, nu, lambda_, mu, rho, dim, time):
batch_size = 13
x = paddle.randn([batch_size, 1])
y = paddle.randn([batch_size, 1])
z = paddle.randn([batch_size, 1]) if dim == 3 else None
t = paddle.randn([batch_size, 1]) if time else None
normal_x = paddle.randn([batch_size, 1])
normal_y = paddle.randn([batch_size, 1])
normal_z = paddle.randn([batch_size, 1]) if dim == 3 else None

x.stop_gradient = False
y.stop_gradient = False
if time:
t.stop_gradient = False
if dim == 3:
z.stop_gradient = False

input_data = paddle.concat([x, y], axis=1)
if time:
input_data = paddle.concat([input_data, t], axis=1)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

PaddleScience里,时间数据t如果有的话,会排在通道维度的最前面,input_data = paddle.concat([t, input_data], axis=1)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

okok

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

okok

感觉你应该理解错了,我的意思是 时间t和其他通道的数据堆叠在一起时,应该排在第一个通道上……
也就是第 177行代码应该改成 input_data = paddle.concat([t, input_data], axis=1)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

哦哦好的

if dim == 3:
input_data = paddle.concat([input_data, z], axis=1)

model = nn.Sequential(
nn.Linear(input_data.shape[1], 9 if dim == 3 else 5),
nn.Tanh(),
)

output = model(input_data)

u, v, *other_outputs = paddle.split(output, num_or_sections=output.shape[1], axis=1)

if dim == 3:
w = other_outputs[0]
sigma_xx, sigma_xy, sigma_xz, sigma_yy, sigma_yz, sigma_zz = other_outputs[1:]
else:
w = None
sigma_xx, sigma_xy, sigma_yy = other_outputs[0:3]
sigma_xz, sigma_yz, sigma_zz = None, None, None

expected_stress_disp_xx = stress_disp_xx_expected_result(
u, v, w, x, y, z, lambda_, mu, dim, sigma_xx
)
expected_stress_disp_yy = stress_disp_yy_expected_result(
u, v, w, x, y, z, lambda_, mu, dim, sigma_yy
)
expected_stress_disp_xy = stress_disp_xy_expected_result(u, v, x, y, mu, sigma_xy)
expected_equilibrium_x = equilibrium_x_expected_result(
u, x, y, z, t, rho, dim, time, sigma_xx, sigma_xy, sigma_xz
)
expected_equilibrium_y = equilibrium_y_expected_result(
v, x, y, z, t, rho, dim, time, sigma_yy, sigma_xy, sigma_yz
)
expected_traction_x = traction_x_expected_result(
normal_x, normal_y, sigma_xx, sigma_xy, normal_z, sigma_xz
)
expected_traction_y = traction_y_expected_result(
normal_x, normal_y, sigma_xy, sigma_yy, normal_z, sigma_yz
)
expected_navier_x = navier_x_expected_result(
u, v, w, x, y, z, t, lambda_, mu, rho, dim, time
)
expected_navier_y = navier_y_expected_result(
u, v, w, x, y, z, t, lambda_, mu, rho, dim, time
)
if dim == 3:
expected_stress_disp_zz = stress_disp_zz_expected_result(
u, v, w, x, y, z, lambda_, mu, sigma_zz
)
expected_stress_disp_xz = stress_disp_xz_expected_result(
u, w, x, z, mu, sigma_xz
)
expected_stress_disp_yz = stress_disp_yz_expected_result(
v, w, y, z, mu, sigma_yz
)
expected_equilibrium_z = equilibrium_z_expected_result(
w, x, y, z, t, rho, time, sigma_xz, sigma_yz, sigma_zz
)
expected_navier_z = navier_z_expected_result(
u, v, w, x, y, z, t, lambda_, mu, rho, time
)
expected_traction_z = traction_z_expected_result(
normal_x, normal_y, normal_z, sigma_xz, sigma_yz, sigma_zz
)

linear_elasticity = equation.LinearElasticity(
E=E, nu=nu, lambda_=lambda_, mu=mu, rho=rho, dim=dim, time=time
)

data_dict = {
"x": x,
"y": y,
"u": u,
"v": v,
"z": z,
"w": w,
"t": t,
"sigma_xx": sigma_xx,
"sigma_xy": sigma_xy,
"sigma_xz": sigma_xz,
"sigma_yy": sigma_yy,
"sigma_yz": sigma_yz,
"sigma_zz": sigma_zz,
"normal_x": normal_x,
"normal_y": normal_y,
"normal_z": normal_z,
}

test_output_names = [
"stress_disp_xx",
"stress_disp_yy",
"stress_disp_xy",
"equilibrium_x",
"equilibrium_y",
"navier_x",
"navier_y",
"traction_x",
"traction_y",
]

if dim == 3:
test_output_names.extend(
[
"stress_disp_zz",
"stress_disp_xz",
"stress_disp_yz",
"equilibrium_z",
"navier_z",
"traction_z",
]
)

test_output = {}
for name in test_output_names:
test_output[name] = linear_elasticity.equations[name](data_dict)
HydrogenSulfate marked this conversation as resolved.
Show resolved Hide resolved

expected_output = {
"stress_disp_xx": expected_stress_disp_xx,
"stress_disp_yy": expected_stress_disp_yy,
"stress_disp_xy": expected_stress_disp_xy,
"equilibrium_x": expected_equilibrium_x,
"equilibrium_y": expected_equilibrium_y,
"navier_x": expected_navier_x,
"navier_y": expected_navier_y,
"traction_x": expected_traction_x,
"traction_y": expected_traction_y,
}
if dim == 3:
expected_output.update(
{
"stress_disp_zz": expected_stress_disp_zz,
"stress_disp_xz": expected_stress_disp_xz,
"stress_disp_yz": expected_stress_disp_yz,
"equilibrium_z": expected_equilibrium_z,
"navier_z": expected_navier_z,
"traction_z": expected_traction_z,
}
)

for name in test_output_names:
assert paddle.allclose(expected_output[name], test_output[name])


if __name__ == "__main__":
pytest.main()