-
Notifications
You must be signed in to change notification settings - Fork 234
add YingLong model #771
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
zhiminzhang0830
merged 7 commits into
PaddlePaddle:develop
from
zhiminzhang0830:yinglong_infer
Jan 27, 2024
Merged
add YingLong model #771
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
c76bb2d
add yinglong inference code
zhiminzhang0830 e7b2f0f
add readme file for yinglong
zhiminzhang0830 86f0c48
update yinglong predict code
zhiminzhang0830 21afb9c
add copyright in predict_12layers.py
zhiminzhang0830 beca6a2
update readme
zhiminzhang0830 77ac654
add reference for timefeatures.py
zhiminzhang0830 cdcc400
update predict_12layers and readme
zhiminzhang0830 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,54 @@ | ||
| # Skillful High Resolution Regional Short Term Forecasting with Boundary Smoothing | ||
|
|
||
| YingLong, a high-resolution, short-term regional weather forecasting, artificial-intelligence-based model, which is capable of hourly predicting weather fields including wind speed, temperature, and specific humidity at a 3km resolution. YingLong utilizes a parallel structure of global and local blocks to capture multiscale meteorological features and is trained on analysis dataset. Additionally, the necessary information around the regional boundary is introduced to YingLong through the boundary smoothing strategy, which significantly improves the regional forecasting results. By comparing forecast results with those from WRF-ARW, one of the best numerical prediction models, YingLong demonstrates superior forecasting performances in most cases, especially on surface variables. | ||
|
|
||
| This code is the implementation of YingLong. We select the southeastern region of the United States, which is around the range of 110-130E, 15-35N, with 440 × 408 grid points in Lambert projection. | ||
|
|
||
| ## Installation | ||
|
|
||
| ### 1. Install PaddlePaddle | ||
|
|
||
| Please install the <font color="red"><b>2.5.2</b></font> version of PaddlePaddle according to your environment on the official website of [PaddlePaddle](https://www.paddlepaddle.org.cn/en/install/quick?docurl=/documentation/docs/en/develop/install/pip/linux-pip_en.html). | ||
|
|
||
| For example, if your environment is linux and CUDA 11.2, you can install PaddlePaddle by the following command. | ||
|
|
||
| ``` shell | ||
| python -m pip install paddlepaddle-gpu==2.5.2.post112 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html | ||
| ``` | ||
|
|
||
| After installation, run the following command to verify if PaddlePaddle has been successfully installed. | ||
|
|
||
| ``` shell | ||
| python -c "import paddle; paddle.utils.run_check()" | ||
| ``` | ||
|
|
||
| If `"PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now."` appears, to verify that the installation was successful. | ||
|
|
||
| ### 2. Install PaddleScience | ||
|
|
||
| Clone the code of PaddleScience from [here](https://github.com/PaddlePaddle/PaddleScience.git). | ||
|
|
||
| ``` shell | ||
| git clone -b develop https://github.com/PaddlePaddle/PaddleScience.git | ||
| ``` | ||
|
|
||
| ## Example Usage | ||
|
|
||
| ### 1. Download the data and model weights | ||
|
|
||
| ``` shell | ||
| cd PaddleScience | ||
| wget https://paddle-org.bj.bcebos.com/paddlescience/datasets/yinglong/hrrr_example_24vars.tar | ||
| tar -xvf hrrr_example_24vars.tar | ||
| wget https://paddle-org.bj.bcebos.com/paddlescience/models/yinglong/yinglong_models.tar | ||
| tar -xvf yinglong_models.tar | ||
| ``` | ||
|
|
||
| ### 2. Run the code | ||
|
|
||
| The following code runs the Yinglong model, and the model output will be saved in 'output/result.npy'. | ||
|
|
||
| ``` shell | ||
| export PYTHONPATH=$PWD | ||
| python examples/yinglong/predict_12layers.py | ||
| ``` |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,189 @@ | ||
| # Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
|
|
||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
|
|
||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| import argparse | ||
| from os import path as osp | ||
|
|
||
| import h5py | ||
| import numpy as np | ||
| import paddle | ||
| import paddle.inference as paddle_infer | ||
| import pandas as pd | ||
| from packaging import version | ||
|
|
||
| from examples.yinglong.timefeatures import time_features | ||
| from ppsci.utils import logger | ||
|
|
||
|
|
||
| class YingLong: | ||
| def __init__( | ||
| self, model_file: str, params_file: str, mean_path: str, std_path: str | ||
| ): | ||
| self.model_file = model_file | ||
| self.params_file = params_file | ||
|
|
||
| config = paddle_infer.Config(model_file, params_file) | ||
| config.switch_ir_optim(False) | ||
| config.enable_use_gpu(100, 0) | ||
| config.enable_memory_optim() | ||
|
|
||
| self.predictor = paddle_infer.create_predictor(config) | ||
|
|
||
| # get input names and data handles | ||
| self.input_names = self.predictor.get_input_names() | ||
| self.input_data_handle = self.predictor.get_input_handle(self.input_names[0]) | ||
| self.time_stamps_handle = self.predictor.get_input_handle(self.input_names[1]) | ||
| self.nwp_data_handle = self.predictor.get_input_handle(self.input_names[2]) | ||
|
|
||
| # get output names and data handles | ||
| self.output_names = self.predictor.get_output_names() | ||
| self.output_handle = self.predictor.get_output_handle(self.output_names[0]) | ||
|
|
||
| # load mean and std data | ||
| self.mean = np.load(mean_path).reshape(-1, 1, 1).astype(np.float32) | ||
| self.std = np.load(std_path).reshape(-1, 1, 1).astype(np.float32) | ||
|
|
||
| def _preprocess_data(self, input_data, time_stamps, nwp_data): | ||
| # normalize data | ||
| input_data = (input_data - self.mean) / self.std | ||
| nwp_data = (nwp_data - self.mean) / self.std | ||
|
|
||
| # process time stamps | ||
| for i in range(len(time_stamps)): | ||
| time_stamps[i] = pd.DataFrame({"date": time_stamps[i]}) | ||
| time_stamps[i] = time_features(time_stamps[i], timeenc=1, freq="h").astype( | ||
| np.float32 | ||
| ) | ||
| time_stamps = np.asarray(time_stamps) | ||
| return input_data, time_stamps, nwp_data | ||
|
|
||
| def _postprocess_data(self, data): | ||
| # denormalize data | ||
| data = data * self.std + self.mean | ||
| return data | ||
|
|
||
| def __call__(self, input_data, time_stamp, nwp_data): | ||
| # preprocess data | ||
| input_data, time_stamps, nwp_data = self._preprocess_data( | ||
| input_data, time_stamp, nwp_data | ||
| ) | ||
|
|
||
| # set input data | ||
| self.input_data_handle.copy_from_cpu(input_data) | ||
| self.time_stamps_handle.copy_from_cpu(time_stamps) | ||
| self.nwp_data_handle.copy_from_cpu(nwp_data) | ||
|
|
||
| # run predictor | ||
| self.predictor.run() | ||
|
|
||
| # get output data | ||
| output_data = self.output_handle.copy_to_cpu() | ||
|
|
||
| # postprocess data | ||
| output_data = self._postprocess_data(output_data) | ||
| return output_data | ||
|
|
||
|
|
||
| def parse_args(): | ||
| parser = argparse.ArgumentParser() | ||
| parser.add_argument( | ||
| "--model_file", | ||
| type=str, | ||
| default="./yinglong_models/yinglong_12.pdmodel", | ||
| help="Model filename", | ||
| ) | ||
| parser.add_argument( | ||
| "--params_file", | ||
| type=str, | ||
| default="./yinglong_models/yinglong_12.pdiparams", | ||
| help="Parameter filename", | ||
| ) | ||
| parser.add_argument( | ||
| "--mean_path", | ||
| type=str, | ||
| default="./hrrr_example_24vars/stat/mean_crop.npy", | ||
| help="Mean filename", | ||
| ) | ||
| parser.add_argument( | ||
| "--std_path", | ||
| type=str, | ||
| default="./hrrr_example_24vars/stat/std_crop.npy", | ||
| help="Standard deviation filename", | ||
| ) | ||
| parser.add_argument( | ||
| "--input_file", | ||
| type=str, | ||
| default="./hrrr_example_24vars/valid/2022/01/01.h5", | ||
| help="Input filename", | ||
| ) | ||
| parser.add_argument( | ||
| "--init_time", type=str, default="2022/01/01/00", help="Init time" | ||
| ) | ||
| parser.add_argument( | ||
| "--nwp_file", | ||
| type=str, | ||
| default="./hrrr_example_24vars/nwp_convert/2022/01/01/00.h5", | ||
| help="NWP filename", | ||
| ) | ||
| parser.add_argument( | ||
| "--num_timestamps", type=int, default=22, help="Number of timestamps" | ||
| ) | ||
| parser.add_argument( | ||
| "--output_path", type=str, default="output", help="Output file path" | ||
| ) | ||
|
|
||
| return parser.parse_args() | ||
|
|
||
|
|
||
| def main(): | ||
| args = parse_args() | ||
| logger.init_logger("ppsci", osp.join(args.output_path, "predict.log"), "info") | ||
| if version.Version(paddle.__version__) != version.Version("2.5.2"): | ||
| logger.error( | ||
| f"Your Paddle version is {paddle.__version__}, but this code currently " | ||
| "only supports PaddlePaddle 2.5.2. The latest version of Paddle will be " | ||
| "supported as soon as possible." | ||
| ) | ||
| exit() | ||
|
|
||
| num_timestamps = args.num_timestamps | ||
|
|
||
| # create predictor | ||
| predictor = YingLong( | ||
| args.model_file, args.params_file, args.mean_path, args.std_path | ||
| ) | ||
|
|
||
| # load data | ||
| input_file = h5py.File(args.input_file, "r")["fields"] | ||
| nwp_file = h5py.File(args.nwp_file, "r")["fields"] | ||
| input_data = input_file[0:1] | ||
| nwp_data = nwp_file[0:num_timestamps] | ||
|
|
||
| # create time stamps | ||
| cur_time = pd.to_datetime(args.init_time, format="%Y/%m/%d/%H") | ||
| time_stamps = [[cur_time]] | ||
| for _ in range(num_timestamps): | ||
| cur_time += pd.Timedelta(hours=1) | ||
| time_stamps.append([cur_time]) | ||
|
|
||
| # run predictor | ||
| output_data = predictor(input_data, time_stamps, nwp_data) | ||
|
|
||
| save_path = osp.join(args.output_path, "result.npy") | ||
| logger.info(f"Save output to {save_path}") | ||
| np.save(save_path, output_data) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| main() | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
此处建议加一下版本检查,并说明:暂时只支持使用2.5.2推理,其它版本会在近期尽快支持。
版本检查代码参考:https://github.com/PaddlePaddle/PaddleScience/blob/develop/ppsci/solver/solver.py#L356
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done