-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add PortraitNet to branch Release/2.2. (#1156)
- Loading branch information
Showing
17 changed files
with
1,188 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
# PortraitNet: Real-time Portrait Segmentation Network for Mobile Device | ||
|
||
## Reference | ||
|
||
> Song-Hai Zhanga, Xin Donga, Jia Lib, Ruilong Lia, Yong-Liang Yang. "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019. | ||
## Usage | ||
[https://aistudio.baidu.com/aistudio/projectdetail/1754799](https://aistudio.baidu.com/aistudio/projectdetail/1754799) | ||
|
||
## Dataset | ||
[https://pan.baidu.com/s/15uBpR7zFF2zpUccoq5pQYg](https://pan.baidu.com/s/15uBpR7zFF2zpUccoq5pQYg) | ||
|
||
password: ajcs | ||
|
||
## Performance | ||
|
||
| Model | Backbone | Dataset | Resolution | Training Iters | mIoU | | ||
|-|-|-|-|-|-|-|-| | ||
|PortraitNet|MobileNetV2|EG1800|224x224|46000|96.92%| | ||
|PortraitNet|MobileNetV2|Supervise.ly|224x224|60000|93.94%| |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
batch_size: 64 | ||
iters: 46000 | ||
|
||
train_dataset: | ||
type: EG1800 | ||
dataset_root: data/EG1800 | ||
common_transforms: | ||
- type: RandomAffine | ||
max_rotation: 45 | ||
min_scale_factor: 0.5 | ||
max_scale_factor: 1.5 | ||
size: [ 224, 224 ] | ||
translation_offset: 56 | ||
- type: RandomHorizontalFlip | ||
transforms1: | ||
- type: Normalize | ||
mean: [0.485, 0.458, 0.408] | ||
std: [0.23, 0.23, 0.23] | ||
transforms2: | ||
- type: RandomDistort | ||
brightness_range: 0.6 | ||
contrast_range: 0.4 | ||
saturation_range: 0.6 | ||
hue_prob: 0.0 | ||
sharpness_range: 0.2 | ||
sharpness_prob: 0.5 | ||
- type: RandomBlur | ||
prob: 0.5 | ||
blur_type: random | ||
- type: RandomNoise | ||
- type: Normalize | ||
mean: [ 0.485, 0.458, 0.408 ] | ||
std: [ 0.23, 0.23, 0.23 ] | ||
mode: train | ||
|
||
val_dataset: | ||
type: EG1800 | ||
dataset_root: data/EG1800 | ||
common_transforms: | ||
- type: ScalePadding | ||
target_size: [ 224, 224 ] | ||
im_padding_value: [127.5, 127.5, 127.5] | ||
label_padding_value: 0 | ||
- type: Normalize | ||
mean: [0.485, 0.458, 0.408] | ||
std: [0.23, 0.23, 0.23] | ||
transforms1: null | ||
transforms2: null | ||
mode: val | ||
|
||
optimizer: | ||
type: adam | ||
weight_decay: 5.0e-4 | ||
|
||
lr_scheduler: | ||
type: StepDecay | ||
learning_rate: 0.001 | ||
step_size: 460 | ||
gamma: 0.95 | ||
|
||
loss: | ||
types: | ||
- type: CrossEntropyLoss | ||
- type: CrossEntropyLoss | ||
- type: FocalLoss | ||
edge_label: True | ||
- type: KLLoss | ||
coef: [1, 1, 0.3, 2] | ||
|
||
model: | ||
type: PortraitNet | ||
backbone: | ||
type: MobileNetV2 | ||
channel_ratio: 1.0 | ||
min_channel: 16 | ||
pretrained: https://bj.bcebos.com/paddleseg/dygraph/mobilenetv2.tar.gz | ||
add_edge: True | ||
num_classes: 2 |
50 changes: 50 additions & 0 deletions
50
configs/portraitnet/portraitnet_supervisely_224x224_60k.yml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
_base_: './portraitnet_eg1800_224x224_46k.yml' | ||
batch_size: 64 | ||
iters: 60000 | ||
|
||
train_dataset: | ||
type: SUPERVISELY | ||
dataset_root: data/Supervisely_face | ||
common_transforms: | ||
- type: RandomAffine | ||
max_rotation: 45 | ||
min_scale_factor: 0.5 | ||
max_scale_factor: 1.5 | ||
size: [ 224, 224 ] | ||
translation_offset: 56 | ||
- type: RandomHorizontalFlip | ||
transforms1: | ||
- type: Normalize | ||
mean: [0.485, 0.458, 0.408] | ||
std: [0.23, 0.23, 0.23] | ||
transforms2: | ||
- type: RandomDistort | ||
brightness_range: 0.6 | ||
contrast_range: 0.4 | ||
saturation_range: 0.6 | ||
hue_prob: 0.0 | ||
sharpness_range: 0.2 | ||
sharpness_prob: 0.5 | ||
- type: RandomBlur | ||
prob: 0.5 | ||
blur_type: random | ||
- type: RandomNoise | ||
- type: Normalize | ||
mean: [ 0.485, 0.458, 0.408 ] | ||
std: [ 0.23, 0.23, 0.23 ] | ||
mode: train | ||
|
||
val_dataset: | ||
type: SUPERVISELY | ||
dataset_root: data/Supervisely_face | ||
common_transforms: | ||
- type: ScalePadding | ||
target_size: [ 224, 224 ] | ||
im_padding_value: [127.5, 127.5, 127.5] | ||
label_padding_value: 0 | ||
- type: Normalize | ||
mean: [0.485, 0.458, 0.408] | ||
std: [0.23, 0.23, 0.23] | ||
transforms1: null | ||
transforms2: null | ||
mode: val |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import copy | ||
|
||
import cv2 | ||
import numpy as np | ||
|
||
from paddleseg.datasets import Dataset | ||
from paddleseg.cvlibs import manager | ||
from paddleseg.transforms import Compose | ||
from paddleseg.utils.download import download_file_and_uncompress | ||
from paddleseg.utils import seg_env | ||
import paddleseg.transforms.functional as F | ||
|
||
URL = "https://paddleseg.bj.bcebos.com/dataset/EG1800.zip" | ||
|
||
|
||
@manager.DATASETS.add_component | ||
class EG1800(Dataset): | ||
""" | ||
EG1800 dataset `http://xiaoyongshen.me/webpage_portrait/index.html`. | ||
Args: | ||
common_transforms (list): A list of common image transformations for two inputs of portrait net. | ||
transforms1 (list): A list of image transformations for the first input of portrait net. | ||
transforms2 (list): A list of image transformations for the second input of portrait net. | ||
dataset_root (str, optional): The EG1800 dataset directory. Default: None. | ||
mode (str, optional): A subset of the entire dataset. It should be one of ('train', 'val'). Default: 'train'. | ||
edge (bool, optional): Whether to compute edge while training. Default: False | ||
""" | ||
NUM_CLASSES = 2 | ||
|
||
def __init__(self, | ||
common_transforms, | ||
transforms1, | ||
transforms2, | ||
dataset_root=None, | ||
mode='train', | ||
edge=False): | ||
self.dataset_root = dataset_root | ||
self.common_transforms = Compose(common_transforms) | ||
self.transforms = self.common_transforms | ||
if transforms1 is not None: | ||
self.transforms1 = Compose(transforms1, to_rgb=False) | ||
if transforms2 is not None: | ||
self.transforms2 = Compose(transforms2, to_rgb=False) | ||
mode = mode.lower() | ||
self.ignore_index = 255 | ||
self.mode = mode | ||
self.num_classes = self.NUM_CLASSES | ||
self.input_width = 224 | ||
self.input_height = 224 | ||
|
||
if self.dataset_root is None: | ||
self.dataset_root = download_file_and_uncompress( | ||
url=URL, | ||
savepath=seg_env.DATA_HOME, | ||
extrapath=seg_env.DATA_HOME) | ||
elif not os.path.exists(self.dataset_root): | ||
self.dataset_root = os.path.normpath(self.dataset_root) | ||
savepath, extraname = self.dataset_root.rsplit( | ||
sep=os.path.sep, maxsplit=1) | ||
self.dataset_root = download_file_and_uncompress( | ||
url=URL, | ||
savepath=savepath, | ||
extrapath=savepath, | ||
extraname=extraname) | ||
|
||
if mode == 'train': | ||
path = os.path.join(dataset_root, 'eg1800_train.txt') | ||
else: | ||
path = os.path.join(dataset_root, 'eg1800_test.txt') | ||
with open(path, 'r') as f: | ||
files = f.readlines() | ||
img_files = [ | ||
os.path.join(dataset_root, 'Images', file).strip() for file in files | ||
] | ||
label_files = [ | ||
os.path.join(dataset_root, 'Labels', file).strip() for file in files | ||
] | ||
|
||
self.file_list = [[ | ||
img_path, label_path | ||
] for img_path, label_path in zip(img_files, label_files)] | ||
pass | ||
|
||
def __getitem__(self, item): | ||
image_path, label_path = self.file_list[item] | ||
im = cv2.imread(image_path) | ||
label = cv2.imread(label_path, 0) | ||
label[label > 1] = 0 | ||
|
||
if self.mode == "val": | ||
common_im, label = self.common_transforms(im=im, label=label) | ||
im = np.float32(common_im[::-1, :, :]) # RGB => BGR | ||
im_aug = copy.deepcopy(im) | ||
else: | ||
common_im, label = self.common_transforms(im=im, label=label) | ||
common_im = np.transpose(common_im, [1, 2, 0]) | ||
# add augmentation | ||
im, _ = self.transforms1(common_im) | ||
im_aug, _ = self.transforms2(common_im) | ||
|
||
im = np.float32(im[::-1, :, :]) # RGB => BGR | ||
im_aug = np.float32(im_aug[::-1, :, :]) # RGB => BGR | ||
|
||
label = cv2.resize( | ||
np.uint8(label), (self.input_width, self.input_height), | ||
interpolation=cv2.INTER_NEAREST) | ||
|
||
# add mask blur | ||
label = np.uint8(cv2.blur(label, (5, 5))) | ||
label[label >= 0.5] = 1 | ||
label[label < 0.5] = 0 | ||
|
||
edge_mask = F.mask_to_binary_edge( | ||
label, radius=4, num_classes=self.num_classes) | ||
edge_mask = np.transpose(edge_mask, [1, 2, 0]).squeeze(axis=-1) | ||
im = np.concatenate([im_aug, im]) | ||
if self.mode == "train": | ||
return im, label, edge_mask | ||
else: | ||
return im, label |
Oops, something went wrong.