Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] Do type conversion to avoid type promotion #3731

Merged
merged 2 commits into from
May 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,8 @@
# limitations under the License.

# Adapted from https://github.com/facebookresearch/Mask2Former
#
# Original copyright info:
#
# Original copyright info:

# ------------------------------------------------------------------------------------------------
# Deformable DETR
Expand Down Expand Up @@ -56,24 +56,23 @@ def slow_ms_deform_attn(value, value_spatial_shapes, sampling_locations,
(b * num_heads, depth, h, w))
sampling_grid_l_ = sampling_grids[:, :, :, i].transpose(
(0, 2, 1, 3, 4)).flatten(0, 1)
sampling_value_l_ = F.grid_sample(
value_l_,
sampling_grid_l_,
mode='bilinear',
padding_mode='zeros',
align_corners=False)
sampling_value_l_ = F.grid_sample(value_l_,
sampling_grid_l_,
mode='bilinear',
padding_mode='zeros',
align_corners=False)
sampling_value_list.append(sampling_value_l_)
# (b, n_queries, num_heads, num_levels*num_points) -> (b, num_heads, n_queries, num_levels*num_points) -> (b, num_heads, 1, n_queries, num_levels*num_points)
attention_weights = attention_weights.transpose((0, 2, 1, 3, 4)).reshape(
(b * num_heads, 1, n_queries, num_levels * num_points))
output = (paddle.stack(
sampling_value_list,
axis=-2).flatten(-2) * attention_weights).sum(-1).reshape(
(b, num_heads * depth, n_queries))
output = (paddle.stack(sampling_value_list, axis=-2).flatten(-2) *
attention_weights).sum(-1).reshape(
(b, num_heads * depth, n_queries))
return output.transpose((0, 2, 1))


class LinearWithFrozenBias(nn.Layer):

def __init__(self,
in_features,
out_features,
Expand All @@ -83,11 +82,10 @@ def __init__(self,
super().__init__()
self._dtype = self._helper.get_default_dtype()
self._weight_attr = weight_attr
self.weight = self.create_parameter(
shape=[in_features, out_features],
attr=self._weight_attr,
dtype=self._dtype,
is_bias=False)
self.weight = self.create_parameter(shape=[in_features, out_features],
attr=self._weight_attr,
dtype=self._dtype,
is_bias=False)
bias_init_val = bias_init_val.flatten()
bias_init_val = bias_init_val.astype(self._dtype)
if bias_init_val.shape[0] != out_features:
Expand All @@ -107,12 +105,13 @@ def extra_repr(self):


class MSDeformAttn(nn.Layer, THLinearInitMixin):

def __init__(self, embed_dim=256, num_levels=4, num_heads=8, num_points=4):
super().__init__()
if embed_dim % num_heads != 0:
raise ValueError(
"`embed_dim` must be divisible by `num_heads`, but got {} and {}".
format(embed_dim, num_heads))
"`embed_dim` must be divisible by `num_heads`, but got {} and {}"
.format(embed_dim, num_heads))

self.im2col_step = 128

Expand All @@ -121,8 +120,8 @@ def __init__(self, embed_dim=256, num_levels=4, num_heads=8, num_points=4):
self.num_heads = num_heads
self.num_points = num_points

self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels *
num_points * 2)
self.sampling_offsets = nn.Linear(
embed_dim, num_heads * num_levels * num_points * 2)
self.attention_weights = nn.Linear(embed_dim,
num_heads * num_levels * num_points)
self.value_proj = nn.Linear(embed_dim, embed_dim)
Expand Down Expand Up @@ -162,8 +161,8 @@ def forward(self,
input_padding_mask=None):
n, len_q, _ = query.shape
n, len_in, _ = input_flatten.shape
assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]
).sum() == len_in
assert (input_spatial_shapes[:, 0] *
input_spatial_shapes[:, 1]).sum() == len_in

value = self.value_proj(input_flatten)
if input_padding_mask is not None:
Expand All @@ -181,22 +180,24 @@ def forward(self,
if reference_points.shape[-1] == 2:
offset_normalizer = paddle.stack(
[input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]],
-1)
-1).astype('float32')
sampling_locations = reference_points[:, :, None, :, None, :] \
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
elif reference_points.shape[-1] == 4:
sampling_locations = reference_points[:, :, None, :, None, :2] \
+ sampling_offsets / self.num_points * reference_points[:, :, None, :, None, 2:] * 0.5
else:
raise ValueError(
"Last dim of reference_points must be 2 or 4, but get {} instead.".
format(reference_points.shape[-1]))
"Last dim of reference_points must be 2 or 4, but get {} instead."
.format(reference_points.shape[-1]))
if paddle.is_compiled_with_cuda():
# GPU
with use_custom_op('ms_deform_attn') as msda:
output = msda.ms_deform_attn(
value, input_spatial_shapes, input_level_start_index,
sampling_locations, attention_weights, self.im2col_step)
output = msda.ms_deform_attn(value, input_spatial_shapes,
input_level_start_index,
sampling_locations,
attention_weights,
self.im2col_step)
else:
# CPU
output = slow_ms_deform_attn(value, input_spatial_shapes,
Expand Down
31 changes: 18 additions & 13 deletions paddleseg/models/layers/ms_deformable_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@


class MSDeformAttn(nn.Layer):

def __init__(self,
d_model=256,
n_levels=4,
Expand Down Expand Up @@ -57,18 +58,20 @@ def __init__(self,
@staticmethod
def _is_power_of_2(n):
if (not isinstance(n, int)) or (n < 0):
raise ValueError('invalid input for _is_power_of_2: {} (type: {})'.
format(n, type(n)))
raise ValueError(
'invalid input for _is_power_of_2: {} (type: {})'.format(
n, type(n)))
return (n & (n - 1) == 0) and n != 0

def _reset_parameters(self):
constant_init(self.sampling_offsets.weight, value=0.)
thetas = paddle.arange(
self.n_heads, dtype='float32') * (2.0 * math.pi / self.n_heads)
thetas = paddle.arange(self.n_heads,
dtype='float32') * (2.0 * math.pi / self.n_heads)
grid_init = paddle.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (grid_init / grid_init.abs().max(
-1, keepdim=True)[0]).reshape([self.n_heads, 1, 1, 2]).tile(
[1, self.n_levels, self.n_points, 1])
grid_init = (grid_init /
grid_init.abs().max(-1, keepdim=True)[0]).reshape(
[self.n_heads, 1, 1,
2]).tile([1, self.n_levels, self.n_points, 1])
for i in range(self.n_points):
grid_init[:, :, i, :] *= i + 1

Expand Down Expand Up @@ -112,8 +115,8 @@ def masked_fill(x, mask, value):

N, Len_q, _ = query.shape
N, Len_in, _ = input_flatten.shape
assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]
).sum() == Len_in
assert (input_spatial_shapes[:, 0] *
input_spatial_shapes[:, 1]).sum() == Len_in

value = self.value_proj(input_flatten)
if input_padding_mask is not None:
Expand All @@ -133,7 +136,7 @@ def masked_fill(x, mask, value):
if reference_points.shape[-1] == 2:
offset_normalizer = paddle.stack(
[input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]],
-1)
-1).astype('float32')
sampling_locations = reference_points[:, :, None, :, None, :] \
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
elif reference_points.shape[-1] == 4:
Expand All @@ -152,8 +155,10 @@ def masked_fill(x, mask, value):
"https://paddleseg.bj.bcebos.com/dygraph/customized_ops/ms_deform_attn.zip"
)
exit()
output = ms_deform_attn.ms_deform_attn(
value, input_spatial_shapes, input_level_start_index,
sampling_locations, attention_weights, self.im2col_step)
output = ms_deform_attn.ms_deform_attn(value, input_spatial_shapes,
input_level_start_index,
sampling_locations,
attention_weights,
self.im2col_step)
output = self.output_proj(output)
return output