Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PaddlePaddle Hackathon] 第34题 BiRNN测试 #288

Merged
merged 18 commits into from
Nov 8, 2021
Merged
Changes from 16 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
365 changes: 365 additions & 0 deletions framework/api/nn/test_birnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,365 @@
#!/bin/env python
# -*- coding: utf-8 -*-
# encoding=utf-8 vi:ts=4:sw=4:expandtab:ft=python
"""
paddle.nn.RNN float32测试
"""
import copy

from apibase import APIBase, compare
import paddle
import pytest
import numpy as np

from rnn_numpy import SimpleRNNCell, BiRNN


class TestBiRNN(APIBase):
"""
test RNN float32
"""

def hook(self):
"""
implement
"""
self.types = [np.float32]
self.seed = 100
self.delta = 0.0001
self.forward_kwargs = {} # 前向传播参数
paddle.set_default_dtype("float32")

def _static_forward(self, res, data=None, **kwargs):
"""
_static_forward
"""

main_program = paddle.static.Program()
startup_program = paddle.static.Program()
main_program.random_seed = self.seed

cell_fw = kwargs["cell_fw"]
cell_bw = kwargs["cell_bw"]

with paddle.utils.unique_name.guard():
with paddle.static.program_guard(main_program=main_program, startup_program=startup_program):
if data is not None:
data = data.astype(self.dtype)
self.data = paddle.static.data(name="data", shape=data.shape, dtype=self.dtype)
self.data.stop_gradient = False
data = dict({"data": data}, **kwargs)

static_cell_fw = paddle.nn.SimpleRNNCell(cell_fw.input_size, cell_fw.hidden_size)
static_cell_bw = paddle.nn.SimpleRNNCell(cell_bw.input_size, cell_bw.hidden_size)

parameters_fw = {}
for k, v in kwargs["cell_fw"].named_parameters():
parameters_fw[k] = v

parameters_bw = {}
for k, v in kwargs["cell_bw"].named_parameters():
parameters_bw[k] = v

obj = self.func(
cell_fw=static_cell_fw, cell_bw=static_cell_bw, time_major=self.kwargs.get("time_major", False)
)

output, h = obj(self.data)

if self.enable_backward:
loss = paddle.mean(output)
g = paddle.static.gradients(loss, self.data)
exe = paddle.static.Executor(self.place)
exe.run(startup_program)

for k, v in static_cell_fw.named_parameters():
v.set_value(parameters_fw[k])
for k, v in static_cell_bw.named_parameters():
v.set_value(parameters_bw[k])

res = exe.run(main_program, feed=data, fetch_list=[output, h, g], return_numpy=True)
grad = {"data": res[3]}
return res[0], grad
else:
exe = paddle.static.Executor(self.place)
exe.run(startup_program)

for k, v in static_cell_fw.named_parameters():
v.set_value(parameters_fw[k])
for k, v in static_cell_bw.named_parameters():
v.set_value(parameters_bw[k])

res = exe.run(main_program, feed=data, fetch_list=[output, h], return_numpy=True)
return res[0]

def _dygraph_forward(self):
"""
_dygraph_forward
"""
cell_fw = copy.deepcopy(self.kwargs.get("cell_fw"))
cell_bw = copy.deepcopy(self.kwargs.get("cell_bw"))
obj = self.func(cell_fw=cell_fw, cell_bw=cell_bw, time_major=self.kwargs.get("time_major", False))
res = obj(
self.data,
initial_states=self.forward_kwargs.get("initial_states", None),
sequence_length=self.forward_kwargs.get("sequence_length", None),
)
return res[0]


obj = TestBiRNN(paddle.nn.BiRNN)


class TestBiRNN64(TestBiRNN):
"""
test RNN float64
"""

def hook(self):
"""
implement
"""
self.types = [np.float64]
self.seed = 100
self.delta = 0.0001
self.forward_kwargs = {} # 前向传播参数
paddle.set_default_dtype("float64")

iverxin marked this conversation as resolved.
Show resolved Hide resolved

obj64 = TestBiRNN64(paddle.nn.BiRNN)


def copy_cell_params(np_cell, paddle_cell, dtype="float32"):
"""
将np_cell的参数复制到paddle_cell中
"""
paddle.disable_static()
state = np_cell.parameters
for k, v in paddle_cell.named_parameters():
t = state[k].astype(dtype)
v.set_value(t)
return paddle_cell


def create_cell(input_size, hidden_size, dtype="float32"):
"""
创建RNNCell,保证numpy版本和Paddle初始化参数相同。
"""
np_cell_fw = SimpleRNNCell(input_size, hidden_size)
np_cell_bw = SimpleRNNCell(input_size, hidden_size)
paddle_cell_fw = paddle.nn.SimpleRNNCell(input_size, hidden_size)
paddle_cell_bw = paddle.nn.SimpleRNNCell(input_size, hidden_size)

paddle_cell_fw = copy_cell_params(np_cell_fw, paddle_cell_fw, dtype)
paddle_cell_bw = copy_cell_params(np_cell_bw, paddle_cell_bw, dtype)

return np_cell_fw, np_cell_bw, paddle_cell_fw, paddle_cell_bw


@pytest.mark.api_nn_RNN_vartype
def test_rnn_base():
"""
base测试,包括动态度、静态图、cpu/gpu,grad,动态静态图的结果一致性
"""
paddle.set_default_dtype("float32")
np.random.seed(obj.seed)
inputs = np.random.random((3, 3, 4))
np_cell_fw, np_cell_bw, paddle_cell_fw, paddle_cell_bw = create_cell(4, 8)
rnn = BiRNN(cell_fw=np_cell_fw, cell_bw=np_cell_bw)
res_outputs = rnn(inputs)[0]
res = res_outputs.astype("float32")
obj.base(res, data=inputs, cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw)


@pytest.mark.api_nn_RNN_parameters
def test_rnn1():
"""
float32默认参数测试。
time_major=False
RnnCell size = (16, 32)
"""
paddle.set_default_dtype("float32")
paddle.disable_static()
# numpy
np.random.seed(obj.seed)
inputs = np.random.random((10, 8, 16))
np_cell_fw, np_cell_bw, paddle_cell_fw, paddle_cell_bw = create_cell(16, 32)
rnn = BiRNN(cell_fw=np_cell_fw, cell_bw=np_cell_bw)
res_outputs = rnn(inputs)[0]
res = res_outputs.astype("float32")
obj.run(res, data=inputs, cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw)


@pytest.mark.api_nn_RNN_parameters
def test_rnn2():
"""
time_major=True
"""
paddle.set_default_dtype("float32")
paddle.disable_static()
# numpy
np.random.seed(obj.seed)
inputs = np.random.random((10, 4, 128))
np_cell_fw, np_cell_bw, paddle_cell_fw, paddle_cell_bw = create_cell(128, 32)
rnn = BiRNN(cell_fw=np_cell_fw, cell_bw=np_cell_bw, time_major=True)
res_outputs = rnn(inputs)[0]
res = res_outputs.astype("float32")
obj.run(res, data=inputs, cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw, time_major=True)


def test_rnn3():
"""
带初始化状态测试, 带有initial_states
"""
dtype = "float32"
paddle.set_default_dtype(dtype)
paddle.disable_static()
# numpy
np.random.seed(obj.seed)
inputs = np.random.random((10, 8, 16))
initial_states0 = np.random.random((10, 32))
initial_states1 = np.random.random((10, 32))
initial_states = [initial_states0, initial_states1]
np_cell_fw, np_cell_bw, paddle_cell_fw, paddle_cell_bw = create_cell(16, 32, dtype=dtype)
np_rnn = BiRNN(cell_fw=np_cell_fw, cell_bw=np_cell_bw)
np_outputs = np_rnn(inputs, initial_states=initial_states)[0].astype(dtype)

paddle_rnn = paddle.nn.BiRNN(cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw)
initial_states = [paddle.to_tensor(t, dtype=dtype) for t in initial_states]
paddle_outputs = paddle_rnn(paddle.to_tensor(inputs, dtype=dtype), initial_states=initial_states)[0]

compare(expect=np_outputs, result=paddle_outputs.numpy(), delta=obj.delta, rtol=obj.rtol)


@pytest.mark.api_nn_RNN_parameters
def test_rnn4():
"""
float32 异常测试,fw_cell和bw_cell尺寸不同
"""
paddle.set_default_dtype("float32")
paddle.disable_static()
# numpy
np.random.seed(obj64.seed)
inputs = np.random.random((10, 4, 128))

paddle_cell_fw = paddle.nn.SimpleRNNCell(4, 16)
paddle_cell_bw = paddle.nn.SimpleRNNCell(8, 16)

obj.exception(etype=ValueError, mode="python", data=inputs, cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw)


@pytest.mark.api_nn_RNN_vartype
def test_rnn_base_64():
"""
float64 base测试,包括动态度、静态图、cpu/gpu,grad,动态静态图的结果一致性
"""
paddle.disable_static()
paddle.set_default_dtype("float64")
np.random.seed(obj64.seed)
inputs = np.random.random((3, 3, 4))
np_cell_fw, np_cell_bw, paddle_cell_fw, paddle_cell_bw = create_cell(4, 8, dtype="float64")
rnn = BiRNN(cell_fw=np_cell_fw, cell_bw=np_cell_bw)
res_outputs = rnn(inputs)[0]
res = res_outputs.astype(np.float64)
obj64.base(res, data=inputs, cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw)


@pytest.mark.api_nn_RNN_parameters
def test_rnn1_64():
"""
float64默认参数测试。
time_major=False
RnnCell size = (16, 32)
"""
paddle.set_default_dtype("float64")
paddle.disable_static()
# numpy
np.random.seed(obj64.seed)
inputs = np.random.random((10, 8, 16))
np_cell_fw, np_cell_bw, paddle_cell_fw, paddle_cell_bw = create_cell(16, 32, dtype="float64")
rnn = BiRNN(cell_fw=np_cell_fw, cell_bw=np_cell_bw)
res_outputs = rnn(inputs)[0]
res = res_outputs.astype(np.float64)
obj64.run(res, data=inputs, cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw)


@pytest.mark.api_nn_RNN_parameters
def test_rnn2_64():
"""
time_major=True
"""
paddle.set_default_dtype("float64")
paddle.disable_static()
# numpy
np.random.seed(obj64.seed)
inputs = np.random.random((10, 4, 128))
np_cell_fw, np_cell_bw, paddle_cell_fw, paddle_cell_bw = create_cell(128, 32, dtype="float64")
rnn = BiRNN(cell_fw=np_cell_fw, cell_bw=np_cell_bw, time_major=True)
res_outputs = rnn(inputs)[0]
res = res_outputs.astype(np.float64)
obj64.run(res, data=inputs, cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw, time_major=True)
iverxin marked this conversation as resolved.
Show resolved Hide resolved


def test_rnn3_64():
"""
带初始化状态测试, 带有initial_states, time_major=False
"""
dtype = "float64"
paddle.set_default_dtype(dtype)
paddle.disable_static()
# numpy
np.random.seed(obj.seed)
inputs = np.random.random((10, 8, 16))
initial_states0 = np.random.random((10, 32))
initial_states1 = np.random.random((10, 32))
initial_states = [initial_states0, initial_states1]
np_cell_fw, np_cell_bw, paddle_cell_fw, paddle_cell_bw = create_cell(16, 32, dtype=dtype)
np_rnn = BiRNN(cell_fw=np_cell_fw, cell_bw=np_cell_bw)
np_outputs = np_rnn(inputs, initial_states=initial_states)[0].astype(dtype)

paddle_rnn = paddle.nn.BiRNN(cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw)
initial_states = [paddle.to_tensor(t, dtype=dtype) for t in initial_states]
paddle_outputs = paddle_rnn(paddle.to_tensor(inputs, dtype=dtype), initial_states=initial_states)[0]

compare(expect=np_outputs, result=paddle_outputs.numpy(), delta=obj.delta, rtol=obj.rtol)


def test_rnn3_64():
"""
带初始化状态测试, 带有initial_states,time_major=False
"""
dtype = "float64"
paddle.set_default_dtype(dtype)
paddle.disable_static()
# numpy
np.random.seed(obj.seed)
inputs = np.random.random((10, 8, 16))
initial_states0 = np.random.random((10, 32))
initial_states1 = np.random.random((10, 32))
initial_states = [initial_states0, initial_states1]
np_cell_fw, np_cell_bw, paddle_cell_fw, paddle_cell_bw = create_cell(16, 32, dtype=dtype)
np_rnn = BiRNN(cell_fw=np_cell_fw, cell_bw=np_cell_bw)
np_outputs = np_rnn(inputs, initial_states=initial_states)[0].astype(dtype)

paddle_rnn = paddle.nn.BiRNN(cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw)
initial_states = [paddle.to_tensor(t, dtype=dtype) for t in initial_states]
paddle_outputs = paddle_rnn(paddle.to_tensor(inputs, dtype=dtype), initial_states=initial_states)[0]

compare(expect=np_outputs, result=paddle_outputs.numpy(), delta=obj.delta, rtol=obj.rtol)


@pytest.mark.api_nn_RNN_parameters
def test_rnn4_64():
"""
float64 异常测试,fw_cell和bw_cell尺寸不同
"""
paddle.set_default_dtype("float64")
paddle.disable_static()
# numpy
np.random.seed(obj64.seed)
inputs = np.random.random((10, 4, 128))

paddle_cell_fw = paddle.nn.SimpleRNNCell(4, 16)
paddle_cell_bw = paddle.nn.SimpleRNNCell(8, 16)

obj.exception(etype=ValueError, mode="python", data=inputs, cell_fw=paddle_cell_fw, cell_bw=paddle_cell_bw)