Release Note
PaddleVideo v2.1.0有如下升级点:
框架
- 重构framework架构,单卡和多卡下forward接口统一。
- 重构Inference架构,支持不同模型预测。
- 添加混合精度训练和分布式训练接口。
模型
- PP-TSM
(1) 通过添加tricks,Uniform评估策略下精度由73.5提升至74.54。
(2) 添加dense训练策略,蒸馏精度达到76.16,同等ResNet50 backbone下精度超过slowfast。 - Slowfast
(1) 添加multigrid训练加速策略,在kinetics-400数据集上训练358个epoch仅需6.7天。
(2) 评估精度由74.35提升至75.84。 - BMN
(1) 添加Inference支持。
数据集
- 提供Kinetics-400数据集下载链接,包括百度网盘下载和脚本下载方式。
应用
- FootballAction:
(1) 基础特征模型由TSN替换为ppTSM,准确率由84%提升到94%。
(2) 准确率提升,precision和recall均有大幅提升,F1-score从0.57提升到0.82。
Release Note
Framework
- Refactoring code of model.framework to unify the forward interface of single card and multi card training.
- Refactoring code of utils.inference to support different model predictions.
- Add interface of Automatic Mixed Precision Training and Distributed training.
Model
- PP-TSM
(1) Improve accuracy from 73.5 to 74.54 using uniform sampling method.
(2) Improve accuracy to 76.16 using dense sampling method. - Slowfast
(1) Add multigrid training strategy. It only takes 6.7 days to train 358 epochs on the kinetics-400 dataset using v100.
(2) Improve accuracy from 74.35 to 75.84. - BMN
(1) Support inference.
Dataset
- Provide the download link of kinetics-400 dataset, including Baidu network disk and script download.
Application
- FootballAction
(1) Replace TSN with PP-TSM, and the accuracy is improved from 84% to 94%.
(2) improve F1 score from 0.57 to 0.82.