Skip to content

Commit

Permalink
Merge pull request #218 from joey12300/develop
Browse files Browse the repository at this point in the history
encapsulate GenerateColormap in Visualize
  • Loading branch information
rollroll90 authored Jul 13, 2020
2 parents c1c91a7 + 398b7e4 commit df9645e
Show file tree
Hide file tree
Showing 5 changed files with 9 additions and 92 deletions.
26 changes: 0 additions & 26 deletions deploy/cpp/demo/classifier.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -62,8 +62,6 @@ int main(int argc, char** argv) {
FLAGS_use_ir_optim);

// 进行预测
double total_running_time_s = 0.0;
double total_imread_time_s = 0.0;
int imgs = 1;
if (FLAGS_image_list != "") {
std::ifstream inf(FLAGS_image_list);
Expand All @@ -79,7 +77,6 @@ int main(int argc, char** argv) {
}
imgs = image_paths.size();
for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
auto start = system_clock::now();
// 读图像
int im_vec_size =
std::min(static_cast<int>(image_paths.size()), i + FLAGS_batch_size);
Expand All @@ -91,19 +88,7 @@ int main(int argc, char** argv) {
for (int j = i; j < im_vec_size; ++j) {
im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
}
auto imread_end = system_clock::now();
model.predict(im_vec, &results, thread_num);

auto imread_duration = duration_cast<microseconds>(imread_end - start);
total_imread_time_s += static_cast<double>(imread_duration.count()) *
microseconds::period::num /
microseconds::period::den;

auto end = system_clock::now();
auto duration = duration_cast<microseconds>(end - start);
total_running_time_s += static_cast<double>(duration.count()) *
microseconds::period::num /
microseconds::period::den;
for (int j = i; j < im_vec_size; ++j) {
std::cout << "Path:" << image_paths[j]
<< ", predict label: " << results[j - i].category
Expand All @@ -112,23 +97,12 @@ int main(int argc, char** argv) {
}
}
} else {
auto start = system_clock::now();
PaddleX::ClsResult result;
cv::Mat im = cv::imread(FLAGS_image, 1);
model.predict(im, &result);
auto end = system_clock::now();
auto duration = duration_cast<microseconds>(end - start);
total_running_time_s += static_cast<double>(duration.count()) *
microseconds::period::num /
microseconds::period::den;
std::cout << "Predict label: " << result.category
<< ", label_id:" << result.category_id
<< ", score: " << result.score << std::endl;
}
std::cout << "Total running time: " << total_running_time_s
<< " s, average running time: " << total_running_time_s / imgs
<< " s/img, total read img time: " << total_imread_time_s
<< " s, average read time: " << total_imread_time_s / imgs
<< " s/img, batch_size = " << FLAGS_batch_size << std::endl;
return 0;
}
31 changes: 2 additions & 29 deletions deploy/cpp/demo/detector.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -65,11 +65,7 @@ int main(int argc, char** argv) {
FLAGS_gpu_id,
FLAGS_key,
FLAGS_use_ir_optim);

double total_running_time_s = 0.0;
double total_imread_time_s = 0.0;
int imgs = 1;
auto colormap = PaddleX::GenerateColorMap(model.labels.size());
std::string save_dir = "output";
// 进行预测
if (FLAGS_image_list != "") {
Expand All @@ -85,7 +81,6 @@ int main(int argc, char** argv) {
}
imgs = image_paths.size();
for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
auto start = system_clock::now();
int im_vec_size =
std::min(static_cast<int>(image_paths.size()), i + FLAGS_batch_size);
std::vector<cv::Mat> im_vec(im_vec_size - i);
Expand All @@ -96,17 +91,7 @@ int main(int argc, char** argv) {
for (int j = i; j < im_vec_size; ++j) {
im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
}
auto imread_end = system_clock::now();
model.predict(im_vec, &results, thread_num);
auto imread_duration = duration_cast<microseconds>(imread_end - start);
total_imread_time_s += static_cast<double>(imread_duration.count()) *
microseconds::period::num /
microseconds::period::den;
auto end = system_clock::now();
auto duration = duration_cast<microseconds>(end - start);
total_running_time_s += static_cast<double>(duration.count()) *
microseconds::period::num /
microseconds::period::den;
// 输出结果目标框
for (int j = 0; j < im_vec_size - i; ++j) {
for (int k = 0; k < results[j].boxes.size(); ++k) {
Expand All @@ -124,23 +109,17 @@ int main(int argc, char** argv) {
// 可视化
for (int j = 0; j < im_vec_size - i; ++j) {
cv::Mat vis_img = PaddleX::Visualize(
im_vec[j], results[j], model.labels, colormap, FLAGS_threshold);
im_vec[j], results[j], model.labels, FLAGS_threshold);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, image_paths[i + j]);
cv::imwrite(save_path, vis_img);
std::cout << "Visualized output saved as " << save_path << std::endl;
}
}
} else {
auto start = system_clock::now();
PaddleX::DetResult result;
cv::Mat im = cv::imread(FLAGS_image, 1);
model.predict(im, &result);
auto end = system_clock::now();
auto duration = duration_cast<microseconds>(end - start);
total_running_time_s += static_cast<double>(duration.count()) *
microseconds::period::num /
microseconds::period::den;
// 输出结果目标框
for (int i = 0; i < result.boxes.size(); ++i) {
std::cout << "image file: " << FLAGS_image << std::endl;
Expand All @@ -155,19 +134,13 @@ int main(int argc, char** argv) {

// 可视化
cv::Mat vis_img =
PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold);
PaddleX::Visualize(im, result, model.labels, FLAGS_threshold);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
cv::imwrite(save_path, vis_img);
result.clear();
std::cout << "Visualized output saved as " << save_path << std::endl;
}

std::cout << "Total running time: " << total_running_time_s
<< " s, average running time: " << total_running_time_s / imgs
<< " s/img, total read img time: " << total_imread_time_s
<< " s, average read img time: " << total_imread_time_s / imgs
<< " s, batch_size = " << FLAGS_batch_size << std::endl;

return 0;
}
31 changes: 2 additions & 29 deletions deploy/cpp/demo/segmenter.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -62,11 +62,7 @@ int main(int argc, char** argv) {
FLAGS_gpu_id,
FLAGS_key,
FLAGS_use_ir_optim);

double total_running_time_s = 0.0;
double total_imread_time_s = 0.0;
int imgs = 1;
auto colormap = PaddleX::GenerateColorMap(model.labels.size());
// 进行预测
if (FLAGS_image_list != "") {
std::ifstream inf(FLAGS_image_list);
Expand All @@ -81,7 +77,6 @@ int main(int argc, char** argv) {
}
imgs = image_paths.size();
for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
auto start = system_clock::now();
int im_vec_size =
std::min(static_cast<int>(image_paths.size()), i + FLAGS_batch_size);
std::vector<cv::Mat> im_vec(im_vec_size - i);
Expand All @@ -92,50 +87,28 @@ int main(int argc, char** argv) {
for (int j = i; j < im_vec_size; ++j) {
im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
}
auto imread_end = system_clock::now();
model.predict(im_vec, &results, thread_num);
auto imread_duration = duration_cast<microseconds>(imread_end - start);
total_imread_time_s += static_cast<double>(imread_duration.count()) *
microseconds::period::num /
microseconds::period::den;
auto end = system_clock::now();
auto duration = duration_cast<microseconds>(end - start);
total_running_time_s += static_cast<double>(duration.count()) *
microseconds::period::num /
microseconds::period::den;
// 可视化
for (int j = 0; j < im_vec_size - i; ++j) {
cv::Mat vis_img =
PaddleX::Visualize(im_vec[j], results[j], model.labels, colormap);
PaddleX::Visualize(im_vec[j], results[j], model.labels);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, image_paths[i + j]);
cv::imwrite(save_path, vis_img);
std::cout << "Visualized output saved as " << save_path << std::endl;
}
}
} else {
auto start = system_clock::now();
PaddleX::SegResult result;
cv::Mat im = cv::imread(FLAGS_image, 1);
model.predict(im, &result);
auto end = system_clock::now();
auto duration = duration_cast<microseconds>(end - start);
total_running_time_s += static_cast<double>(duration.count()) *
microseconds::period::num /
microseconds::period::den;
// 可视化
cv::Mat vis_img = PaddleX::Visualize(im, result, model.labels, colormap);
cv::Mat vis_img = PaddleX::Visualize(im, result, model.labels);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
cv::imwrite(save_path, vis_img);
result.clear();
std::cout << "Visualized output saved as " << save_path << std::endl;
}
std::cout << "Total running time: " << total_running_time_s
<< " s, average running time: " << total_running_time_s / imgs
<< " s/img, total read img time: " << total_imread_time_s
<< " s, average read img time: " << total_imread_time_s / imgs
<< " s, batch_size = " << FLAGS_batch_size << std::endl;

return 0;
}
7 changes: 2 additions & 5 deletions deploy/cpp/include/paddlex/visualize.h
Original file line number Diff line number Diff line change
Expand Up @@ -65,13 +65,12 @@ std::vector<int> GenerateColorMap(int num_class);
* @param img: initial image matrix
* @param results: the detection result
* @param labels: label map
* @param colormap: visualization color map
* @param threshold: minimum confidence to display
* @return visualized image matrix
* */
cv::Mat Visualize(const cv::Mat& img,
const DetResult& results,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap,
float threshold = 0.5);

/*
Expand All @@ -81,13 +80,11 @@ cv::Mat Visualize(const cv::Mat& img,
* @param img: initial image matrix
* @param results: the detection result
* @param labels: label map
* @param colormap: visualization color map
* @return visualized image matrix
* */
cv::Mat Visualize(const cv::Mat& img,
const SegResult& result,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap);
const std::map<int, std::string>& labels);

/*
* @brief
Expand Down
6 changes: 3 additions & 3 deletions deploy/cpp/src/visualize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,8 @@ std::vector<int> GenerateColorMap(int num_class) {
cv::Mat Visualize(const cv::Mat& img,
const DetResult& result,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap,
float threshold) {
auto colormap = GenerateColorMap(labels.size());
cv::Mat vis_img = img.clone();
auto boxes = result.boxes;
for (int i = 0; i < boxes.size(); ++i) {
Expand Down Expand Up @@ -107,8 +107,8 @@ cv::Mat Visualize(const cv::Mat& img,

cv::Mat Visualize(const cv::Mat& img,
const SegResult& result,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap) {
const std::map<int, std::string>& labels) {
auto colormap = GenerateColorMap(labels.size());
std::vector<uint8_t> label_map(result.label_map.data.begin(),
result.label_map.data.end());
cv::Mat mask(result.label_map.shape[0],
Expand Down

0 comments on commit df9645e

Please sign in to comment.