Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed ToPILImage && rm SymbolicShapeInference #903

Merged
merged 3 commits into from
Oct 10, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,8 @@ from paddle.vision.transforms import functional as F

class ToPILImage(BaseTransform):
def __init__(self, mode=None, keys=None):
super(ToTensor, self).__init__(keys)
super(ToPILImage, self).__init__(keys)
self.mode = mode

def _apply_image(self, pic):
"""
Expand Down Expand Up @@ -53,7 +54,7 @@ class ToPILImage(BaseTransform):

npimg = pic
if isinstance(pic, paddle.Tensor) and "float" in str(pic.numpy(
).dtype) and mode != 'F':
).dtype) and self.mode != 'F':
pic = pic.mul(255).byte()
if isinstance(pic, paddle.Tensor):
npimg = np.transpose(pic.numpy(), (1, 2, 0))
Expand All @@ -74,40 +75,40 @@ class ToPILImage(BaseTransform):
expected_mode = 'I'
elif npimg.dtype == np.float32:
expected_mode = 'F'
if mode is not None and mode != expected_mode:
if self.mode is not None and self.mode != expected_mode:
raise ValueError(
"Incorrect mode ({}) supplied for input type {}. Should be {}"
.format(mode, np.dtype, expected_mode))
mode = expected_mode
.format(self.mode, np.dtype, expected_mode))
self.mode = expected_mode

elif npimg.shape[2] == 2:
permitted_2_channel_modes = ['LA']
if mode is not None and mode not in permitted_2_channel_modes:
if self.mode is not None and self.mode not in permitted_2_channel_modes:
raise ValueError("Only modes {} are supported for 2D inputs".
format(permitted_2_channel_modes))

if mode is None and npimg.dtype == np.uint8:
mode = 'LA'
if self.mode is None and npimg.dtype == np.uint8:
self.mode = 'LA'

elif npimg.shape[2] == 4:
permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
if mode is not None and mode not in permitted_4_channel_modes:
if self.mode is not None and self.mode not in permitted_4_channel_modes:
raise ValueError("Only modes {} are supported for 4D inputs".
format(permitted_4_channel_modes))

if mode is None and npimg.dtype == np.uint8:
mode = 'RGBA'
if self.mode is None and npimg.dtype == np.uint8:
self.mode = 'RGBA'
else:
permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
if mode is not None and mode not in permitted_3_channel_modes:
if self.mode is not None and self.mode not in permitted_3_channel_modes:
raise ValueError("Only modes {} are supported for 3D inputs".
format(permitted_3_channel_modes))
if mode is None and npimg.dtype == np.uint8:
mode = 'RGB'
if self.mode is None and npimg.dtype == np.uint8:
self.mode = 'RGB'

if mode is None:
if self.mode is None:
raise TypeError('Input type {} is not supported'.format(
npimg.dtype))

return Image.fromarray(npimg, mode=mode)
return Image.fromarray(npimg, mode=self.mode)
```
11 changes: 6 additions & 5 deletions x2paddle/decoder/onnx_decoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,14 +184,15 @@ def __init__(self, onnx_model, input_shape_dict):
self.value_infos = {}
self.graph = onnx_model.graph
self.get_place_holder_nodes()
print("shape inferencing ...")
self.graph = SymbolicShapeInference.infer_shapes(
onnx_model, fixed_input_shape=self.fixed_input_shape)
if self.graph is None:
print("Shape inferencing ...")
try:
self.graph = SymbolicShapeInference.infer_shapes(
onnx_model, fixed_input_shape=self.fixed_input_shape)
except:
print('[WARNING] Shape inference by ONNX offical interface.')
onnx_model = shape_inference.infer_shapes(onnx_model)
self.graph = onnx_model.graph
print("shape inferenced.")
print("Shape inferenced.")
self.build()
self.collect_value_infos()
self.allocate_shapes()
Expand Down
8 changes: 5 additions & 3 deletions x2paddle/decoder/onnx_shape_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -265,7 +265,7 @@ def _insert_ready_nodes():
if pending_nodes and self.verbose_ > 0:
print('SymbolicShapeInference: orphaned nodes discarded: ')
print(
*[n.op_type + ': ' + n.output[0] for n in pending_nodes],
* [n.op_type + ': ' + n.output[0] for n in pending_nodes],
sep='\n')

if input_shapes is not None:
Expand Down Expand Up @@ -1588,7 +1588,9 @@ def infer_shapes(in_mp,
assert version.parse(onnx.__version__) >= version.parse("1.5.0")
onnx_opset = get_opset(in_mp)
if not onnx_opset or onnx_opset < 7:
print('[WARNING] Symbolic shape inference only support models of onnx opset 7 and above.')
print(
'[WARNING] Symbolic shape inference only support models of onnx opset 7 and above.'
)
return
symbolic_shape_inference = SymbolicShapeInference(
int_max, auto_merge, guess_output_rank, verbose)
Expand All @@ -1608,4 +1610,4 @@ def infer_shapes(in_mp,
print('[WARNING] Incomplete symbolic shape inference')
symbolic_shape_inference.out_mp_ = shape_inference.infer_shapes(
symbolic_shape_inference.out_mp_)
return symbolic_shape_inference.out_mp_.graph
return symbolic_shape_inference.out_mp_.graph