-
Notifications
You must be signed in to change notification settings - Fork 758
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Create soft_margin_loss_cn.rst * Create SoftMarginLoss_cn.rst * Update SoftMarginLoss_cn.rst * Update soft_margin_loss_cn.rst * Update SoftMarginLoss_cn.rst * Update Overview_cn.rst * Update soft_margin_loss_cn.rst * Update soft_margin_loss_cn.rst * Update SoftMarginLoss_cn.rst * Update soft_margin_loss_cn.rst Co-authored-by: Ligoml <39876205+Ligoml@users.noreply.github.com>
- Loading branch information
1 parent
460b99f
commit 78a4acf
Showing
3 changed files
with
77 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
.. _cn_api_paddle_nn_SoftMarginloss: | ||
|
||
SoftMarginloss | ||
------------------------------- | ||
|
||
.. py:class:: paddle.nn.SoftMarginloss((reduction='mean', name=None) | ||
生成一个可以计算输入 `input` 和 `label` 间的二分类损失的类。 | ||
损失函数按照下列公式计算 | ||
.. math:: | ||
\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()} | ||
最后,添加 `reduce` 操作到前面的输出Out上。当 `reduction` 为 `none` 时,直接返回最原始的 `Out` 结果。当 `reduction` 为 `mean` 时,返回输出的均值 :math:`Out = MEAN(Out)` 。当 `reduction` 为 `sum` 时,返回输出的求和 :math:`Out = SUM(Out)` 。 | ||
参数 | ||
::::::::: | ||
- **reduction** (str,可选) - 指定应用于输出结果的计算方式,可选值有: ``'none'``, ``'mean'``, ``'sum'`` 。默认为 ``'mean'``,计算 Loss 的均值;设置为 ``'sum'`` 时,计算 Loss 的总和;设置为 ``'none'`` 时,则返回原始Loss。 | ||
- **name** (str,可选) - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name` 。 | ||
形状 | ||
::::::::: | ||
- **input** (Tensor) - :math:`[N, *]` , 其中N是batch_size, `*` 是任意其他维度。数据类型是float32、float64。 | ||
- **label** (Tensor) - :math:`[N, *]` ,标签 ``label`` 的维度、数据类型与输入 ``input`` 相同。 | ||
- **output** (Tensor) - 输出的Tensor。如果 :attr:`reduction` 是 ``'none'``,则输出的维度为 :math:`[N, *]`,与输入 ``input`` 的形状相同。如果 :attr:`reduction` 是 ``'mean'`` 或 ``'sum'``,则输出的维度为 :math:`[1]` 。 | ||
返回 | ||
::::::::: | ||
返回计算SoftMarginLoss的可调用对象。 | ||
代码示例 | ||
::::::::: | ||
COPY-FROM: paddle.nn.SoftMarginLoss |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
.. _cn_api_paddle_nn_functional_soft_margin_losss: | ||
|
||
soft_margin_loss | ||
------------------------------- | ||
|
||
.. py:function:: paddle.nn.functional.soft_margin_loss(input, label, reduction='mean', name=None) | ||
计算输入 `input` 和 `label` 间的二分类损失。 | ||
|
||
|
||
损失函数按照下列公式计算 | ||
|
||
.. math:: | ||
\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()} | ||
最后,添加 `reduce` 操作到前面的输出Out上。当 `reduction` 为 `none` 时,直接返回最原始的 `Out` 结果。当 `reduction` 为 `mean` 时,返回输出的均值 :math:`Out = MEAN(Out)` 。当 `reduction` 为 `sum` 时,返回输出的求和 :math:`Out = SUM(Out)` 。 | ||
|
||
|
||
参数 | ||
::::::::: | ||
- **input** (Tensor) - :math:`[N, *]` ,其中N是batch_size, `*` 是任意其他维度。数据类型是float32、float64。 | ||
- **label** (Tensor) - :math:`[N, *]` ,标签 ``label`` 的维度、数据类型与输入 ``input`` 相同。 | ||
- **reduction** (str,可选) - 指定应用于输出结果的计算方式,可选值有: ``'none'``、 ``'mean'``、 ``'sum'`` 。默认为 ``'mean'``,计算 Loss 的均值;设置为 ``'sum'`` 时,计算 Loss 的总和;设置为 ``'none'`` 时,则返回原始 Loss。 | ||
- **name** (str,可选) - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name` 。 | ||
|
||
|
||
返回 | ||
::::::::: | ||
- 输出的结果Tensor。如果 :attr:`reduction` 是 ``'none'``, 则输出的维度为 :math:`[N, *]` ,与输入 ``input`` 的形状相同。如果 :attr:`reduction` 是 ``'mean'`` 或 ``'sum'``,则输出的维度为 :math:`[1]` 。 | ||
|
||
|
||
代码示例 | ||
::::::::: | ||
COPY-FROM: paddle.nn.functional.soft_margin_loss |