-
Notifications
You must be signed in to change notification settings - Fork 766
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[PyLayer] pylayer add api #5148
Changes from all commits
ad1c7d3
d39c857
3e99b5f
9445980
16f2616
f89b85c
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -107,3 +107,159 @@ saved_tensor(self, *tensors) | |
y, = ctx.saved_tensor() | ||
grad = dy * (1 - paddle.square(y)) | ||
return grad | ||
|
||
|
||
mark_not_inplace(self, *tensors) | ||
''''''''' | ||
|
||
标记一些输入是不需要 inplace 的。 | ||
如果 ``forward`` 的输入输出是同一个 ``Tensor`` ,并且这个 ``Tensor`` 被标记为 not_inplace 的。Paddle 会替用户创建一个新的 Tensor 作为输出。 | ||
这样可以防止输入的 ``Tensor`` 的 auto grad 信息被错误的篡改。 | ||
|
||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done,thx! |
||
.. note:: | ||
这个函数最多只能在 ``forward`` 调用一次,并且所有的参数必须是 ``forward`` 输入的 ``Tensor`` 。 | ||
|
||
**参数** | ||
|
||
- **tensors** (list of Tensor) - 需要标记 not inplace 的 ``Tensor`` | ||
|
||
**返回** | ||
|
||
None | ||
|
||
**代码示例** | ||
|
||
.. code-block:: python | ||
|
||
import paddle | ||
|
||
class Exp(paddle.autograd.PyLayer): | ||
@staticmethod | ||
def forward(ctx, x): | ||
ctx.mark_not_inplace(x) | ||
return x | ||
|
||
@staticmethod | ||
def backward(ctx, grad_output): | ||
out = grad_output.exp() | ||
return out | ||
|
||
x = paddle.randn((1, 1)) | ||
x.stop_gradient = False | ||
attn_layers = [] | ||
for idx in range(0, 2): | ||
attn_layers.append(Exp()) | ||
|
||
for step in range(0, 2): | ||
a = x | ||
for j in range(0,2): | ||
a = attn_layers[j].apply(x) | ||
a.backward() | ||
|
||
|
||
mark_non_differentiable(self, *tensors) | ||
''''''''' | ||
|
||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done,thx! |
||
标记一些输出是不需要反向的。 | ||
如果 ``forward`` 的输入输出是同一个 ``Tensor`` ,并且这个 ``Tensor`` 被标记为 not_inplace 的。Paddle 会替用户创建一个新的 Tensor 作为输出。 | ||
将不需要反向的 ``Tensor`` 标记为 non-differentiable,可以提升反向的性能。但是你在 ``backward`` 函数的输入参数中,仍要为其留有反向梯度的位置。 | ||
只是这个反向梯度是 1 个全为 0 的、shape 和 ``forward`` 的输出一样的 ``Tensor`` . | ||
|
||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. mark_non_differentiable(self, *args) 需要补充参数args的说明,方便用户理解。同上 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done,thx! |
||
.. note:: | ||
这个函数最多只能在 ``forward`` 调用一次,并且所有的参数必须是 ``forward`` 输出的 ``Tensor`` 。 | ||
|
||
**参数** | ||
|
||
- **tensors** (list of Tensor) - 需要标记不需要反向的 ``Tensor`` | ||
|
||
|
||
**返回** | ||
|
||
None | ||
|
||
**代码示例** | ||
|
||
.. code-block:: python | ||
|
||
import os | ||
os.environ['FLAGS_enable_eager_mode'] = '1' | ||
import paddle | ||
from paddle.autograd import PyLayer | ||
import numpy as np | ||
|
||
class Tanh(PyLayer): | ||
@staticmethod | ||
def forward(ctx, x): | ||
a = x + x | ||
b = x + x + x | ||
ctx.mark_non_differentiable(a) | ||
return a, b | ||
|
||
@staticmethod | ||
def backward(ctx, grad_a, grad_b): | ||
assert np.equal(grad_a.numpy(), paddle.zeros([1]).numpy()) | ||
assert np.equal(grad_b.numpy(), paddle.ones([1], dtype="float64").numpy()) | ||
return grad_b | ||
|
||
x = paddle.ones([1], dtype="float64") | ||
x.stop_gradient = False | ||
a, b = Tanh.apply(x) | ||
b.sum().backward() | ||
|
||
set_materialize_grads(self, value) | ||
''''''''' | ||
|
||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 1、补充对set_materialize_grads(self, value: bool) 功能的一句话说明,便于用户理解。同上 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done,thx! |
||
设置是否要框架来初始化未初始化的反向梯度。默认是 True。 | ||
如果设置为 True,框架会将未初始化的反向梯度数据初始化为 0,然后再调用 ``backward`` 函数。 | ||
如果设置为 False,框架会将未初始化的反向梯度以 None 向 ``backward`` 函数传递。 | ||
|
||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done,thx! |
||
.. note:: | ||
这个函数最多只能在 ``forward`` 中调用。 | ||
|
||
**参数** | ||
|
||
- **value** (bool) - 是否要框架来初始化未初始化的反向梯度 | ||
|
||
|
||
**返回** | ||
|
||
None | ||
|
||
**代码示例** | ||
|
||
.. code-block:: python | ||
|
||
import os | ||
os.environ['FLAGS_enable_eager_mode'] = '1' | ||
import paddle | ||
from paddle.autograd import PyLayer | ||
import numpy as np | ||
|
||
class Tanh(PyLayer): | ||
@staticmethod | ||
def forward(ctx, x): | ||
return x+x+x, x+x | ||
|
||
@staticmethod | ||
def backward(ctx, grad, grad2): | ||
assert np.equal(grad2.numpy(), paddle.zeros([1]).numpy()) | ||
return grad | ||
|
||
class Tanh2(PyLayer): | ||
@staticmethod | ||
def forward(ctx, x): | ||
ctx.set_materialize_grads(False) | ||
return x+x+x, x+x | ||
|
||
@staticmethod | ||
def backward(ctx, grad, grad2): | ||
assert grad2==None | ||
return grad | ||
|
||
x = paddle.ones([1], dtype="float64") | ||
x.stop_gradient = False | ||
Tanh.apply(x)[0].backward() | ||
|
||
x2 = paddle.ones([1], dtype="float64") | ||
x2.stop_gradient = False | ||
Tanh2.apply(x2)[0].backward() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
1、补充对mark_not_inplace(self, *args) 功能的一句话说明,便于用户理解。 参考此文档中save_for_backward(self, *tensors)的一句话说明:
2、注意事项,也可以参考图片中蓝色高亮的形式,优化一下。用户会更加清楚这个API的注意事项。
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done,thx!