Skip to content

Commit

Permalink
Merge pull request #515 from will-am/restructure_ltr
Browse files Browse the repository at this point in the history
Reorganize codes of LTR.
  • Loading branch information
lcy-seso authored Dec 4, 2017
2 parents 3417627 + 901b6ff commit 2e13e06
Show file tree
Hide file tree
Showing 6 changed files with 289 additions and 349 deletions.
12 changes: 4 additions & 8 deletions ltr/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -96,17 +96,15 @@ $$\lambda _{i,j}=\frac{\partial C}{\partial s_{i}} = \frac{1}{2}(1-S_{i,j})-\fra

训练`RankNet`模型在命令行执行:
```bash
python ranknet.py
python train.py --model_type ranknet
```
初次执行会自动下载数据,训练RankNet模型,并将每个轮次的模型参数存储下来。

### RankNet模型预测

使用训练好的`RankNet`模型继续进行预测,在命令行执行:
```bash
python ranknet.py \
--run_type infer \
--test_model_path models/ranknet_params_0.tar.gz
python infer.py --model_type ranknet --test_model_path models/ranknet_params_0.tar.gz
```

本例提供了rankNet模型的训练和预测两个部分。完成训练后的模型分为拓扑结构(需要注意`rank_cost`不是模型拓扑结构的一部分)和模型参数文件两部分。在本例子中复用了`ranknet`训练时的模型拓扑结构`half_ranknet`,模型参数从外存中加载。模型预测的输入为单个文档的特征向量,模型会给出相关性得分。将预测得分排序即可得到最终的文档相关性排序结果。
Expand Down Expand Up @@ -193,7 +191,7 @@ $$\lambda _{i,j}=\frac{\partial C}{\partial s_{i}}=-\frac{\sigma }{1+e^{\sigma (

训练`LambdaRank`模型在命令行执行:
```bash
python lambda_rank.py
python train.py --model_type lambdarank
```
初次运行脚本会自动下载数据训练LambdaRank模型,并将每个轮次的模型存储下来。

Expand All @@ -203,9 +201,7 @@ LambdaRank模型预测过程和RankNet相同。预测时的模型拓扑结构复

使用训练好的`LambdaRank`模型继续进行预测,在命令行执行:
```bash
python lambda_rank.py \
--run_type infer \
--test_model_path models/lambda_rank_params_0.tar.gz
python infer.py --model_type lambdarank --test_model_path models/lambda_rank_params_0.tar.gz
```

## 自定义 LambdaRank数据
Expand Down
115 changes: 115 additions & 0 deletions ltr/infer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
import os
import gzip
import functools
import argparse

import paddle.v2 as paddle

from ranknet import half_ranknet
from lambda_rank import lambda_rank


def ranknet_infer(input_dim, model_path):
"""
RankNet model inference interface.
"""
# we just need half_ranknet to predict a rank score,
# which can be used in sort documents
output = half_ranknet("right", input_dim)
parameters = paddle.parameters.Parameters.from_tar(gzip.open(model_path))

# load data of same query and relevance documents,
# need ranknet to rank these candidates
infer_query_id = []
infer_data = []
infer_doc_index = []

# convert to mq2007 built-in data format
# <query_id> <relevance_score> <feature_vector>
plain_txt_test = functools.partial(
paddle.dataset.mq2007.test, format="plain_txt")

for query_id, relevance_score, feature_vector in plain_txt_test():
infer_query_id.append(query_id)
infer_data.append([feature_vector])

# predict score of infer_data document.
# Re-sort the document base on predict score
# in descending order. then we build the ranking documents
scores = paddle.infer(
output_layer=output, parameters=parameters, input=infer_data)
for query_id, score in zip(infer_query_id, scores):
print "query_id : ", query_id, " score : ", score


def lambda_rank_infer(input_dim, model_path):
"""
LambdaRank model inference interface.
"""
output = lambda_rank(input_dim, is_infer=True)
parameters = paddle.parameters.Parameters.from_tar(gzip.open(model_path))

infer_query_id = None
infer_data = []
infer_data_num = 1

fill_default_test = functools.partial(
paddle.dataset.mq2007.test, format="listwise")
for label, querylist in fill_default_test():
infer_data.append([querylist])
if len(infer_data) == infer_data_num:
break

# Predict score of infer_data document.
# Re-sort the document base on predict score.
# In descending order. then we build the ranking documents.
predicitons = paddle.infer(
output_layer=output, parameters=parameters, input=infer_data)
for i, score in enumerate(predicitons):
print i, score


def parse_args():
parser = argparse.ArgumentParser(
description="PaddlePaddle learning to rank example.")
parser.add_argument(
"--model_type",
type=str,
help=("A flag indicating to run the RankNet or the LambdaRank model. "
"Available options are: ranknet or lambdarank."),
default="ranknet")
parser.add_argument(
"--use_gpu",
type=bool,
help="A flag indicating whether to use the GPU device in training.",
default=False)
parser.add_argument(
"--trainer_count",
type=int,
help="The thread number used in training.",
default=1)
parser.add_argument(
"--test_model_path",
type=str,
required=True,
help=("The path of a trained model."))
return parser.parse_args()


if __name__ == "__main__":
args = parse_args()
assert os.path.exists(args.test_model_path), (
"The trained model does not exit. Please set a correct path.")

paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)

# Training dataset: mq2007, input_dim = 46, dense format.
input_dim = 46

if args.model_type == "ranknet":
ranknet_infer(input_dim, args.test_model_path)
elif args.model_type == "lambdarank":
lambda_rank_infer(input_dim, args.test_model_path)
else:
logger.fatal(("A wrong value for parameter model type. "
"Available options are: ranknet or lambdarank."))
157 changes: 11 additions & 146 deletions ltr/lambda_rank.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,20 @@
import os
import sys
import gzip
import functools
import argparse
import logging
import numpy as np

"""
LambdaRank is a listwise rank model.
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
"""
import paddle.v2 as paddle

logger = logging.getLogger("paddle")
logger.setLevel(logging.INFO)


def lambda_rank(input_dim, is_infer):
def lambda_rank(input_dim, is_infer=False):
"""
LambdaRank is a listwise rank model, the input data and label
must be sequences.
The input data and label for LambdaRank must be sequences.
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
parameters :
input_dim, one document's dense feature vector dimension
The format of the dense_vector_sequence is as follows:
[[f, ...], [f, ...], ...], f is a float or an int number
"""
if not is_infer:
label = paddle.layer.data("label",
paddle.data_type.dense_vector_sequence(1))
data = paddle.layer.data("data",
paddle.data_type.dense_vector_sequence(input_dim))

Expand All @@ -49,134 +37,11 @@ def lambda_rank(input_dim, is_infer):
param_attr=paddle.attr.Param(initial_std=0.01))

if not is_infer:
# Define the cost layer.
label = paddle.layer.data("label",
paddle.data_type.dense_vector_sequence(1))

cost = paddle.layer.lambda_cost(
input=output, score=label, NDCG_num=6, max_sort_size=-1)
return cost, output
return output


def lambda_rank_train(num_passes, model_save_dir):
# The input for LambdaRank must be a sequence.
fill_default_train = functools.partial(
paddle.dataset.mq2007.train, format="listwise")
fill_default_test = functools.partial(
paddle.dataset.mq2007.test, format="listwise")

train_reader = paddle.batch(
paddle.reader.shuffle(fill_default_train, buf_size=100), batch_size=32)
test_reader = paddle.batch(fill_default_test, batch_size=32)

# Training dataset: mq2007, input_dim = 46, dense format.
input_dim = 46
cost, output = lambda_rank(input_dim, is_infer=False)
parameters = paddle.parameters.create(cost)

trainer = paddle.trainer.SGD(
cost=cost,
parameters=parameters,
update_equation=paddle.optimizer.Adam(learning_rate=1e-4))

# Define end batch and end pass event handler.
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
logger.info("Pass %d Batch %d Cost %.9f" %
(event.pass_id, event.batch_id, event.cost))
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader, feeding=feeding)
logger.info("\nTest with Pass %d, %s" %
(event.pass_id, result.metrics))
with gzip.open(
os.path.join(model_save_dir, "lambda_rank_params_%d.tar.gz"
% (event.pass_id)), "w") as f:
trainer.save_parameter_to_tar(f)

feeding = {"label": 0, "data": 1}
trainer.train(
reader=train_reader,
event_handler=event_handler,
feeding=feeding,
num_passes=num_passes)


def lambda_rank_infer(test_model_path):
"""LambdaRank model inference interface.
Parameters:
test_model_path : The path of the trained model.
"""
logger.info("Begin to Infer...")
input_dim = 46
output = lambda_rank(input_dim, is_infer=True)
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(test_model_path))

infer_query_id = None
infer_data = []
infer_data_num = 1

fill_default_test = functools.partial(
paddle.dataset.mq2007.test, format="listwise")
for label, querylist in fill_default_test():
infer_data.append([querylist])
if len(infer_data) == infer_data_num:
break

# Predict score of infer_data document.
# Re-sort the document base on predict score.
# In descending order. then we build the ranking documents.
predicitons = paddle.infer(
output_layer=output, parameters=parameters, input=infer_data)
for i, score in enumerate(predicitons):
print i, score


if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="PaddlePaddle LambdaRank example.")
parser.add_argument(
"--run_type",
type=str,
help=("A flag indicating to run the training or the inferring task. "
"Available options are: train or infer."),
default="train")
parser.add_argument(
"--num_passes",
type=int,
help="The number of passes to train the model.",
default=10)
parser.add_argument(
"--use_gpu",
type=bool,
help="A flag indicating whether to use the GPU device in training.",
default=False)
parser.add_argument(
"--trainer_count",
type=int,
help="The thread number used in training.",
default=1)
parser.add_argument(
"--model_save_dir",
type=str,
required=False,
help=("The path to save the trained models."),
default="models")
parser.add_argument(
"--test_model_path",
type=str,
required=False,
help=("This parameter works only in inferring task to "
"specify path of a trained model."),
default="")

args = parser.parse_args()
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
if args.run_type == "train":
lambda_rank_train(args.num_passes, args.model_save_dir)
elif args.run_type == "infer":
assert os.path.exists(args.test_model_path), (
"The trained model does not exit. Please set a correct path.")
lambda_rank_infer(args.test_model_path)
return cost
else:
logger.fatal(("A wrong value for parameter run type. "
"Available options are: train or infer."))
return output
38 changes: 0 additions & 38 deletions ltr/metrics.py

This file was deleted.

Loading

0 comments on commit 2e13e06

Please sign in to comment.