My_AutoML v0.0.1 Basic workable AutoML
AutoML pipeline
The pipeline is targeted as a AutoML for tabular regression/classification tasks.
Basic workable pipeline insists of a pipeline: encoding, imputation, balancing, scaling, feature selection, regression/classification models.
The pipeline can achieve automated Model Selection and Hyperparameter Optimization by HyperOpt.
Current methods in pipeline (some methods are deprecated and not displayed below):
1. Encoding
1 DataEncoding
2. Imputation
SimpleImputer, JointImputer, ExpectationMaximization, KNNImputer, KNNImputer, MissForestImputer, MICE, GAIN
3. Balancing
SimpleRandomOverSampling SimpleRandomUnderSampling TomekLink EditedNearestNeighbor CondensedNearestNeighbor OneSidedSelection CNN_TomekLink Smote Smote_TomekLink Smote_ENN
4. Scaling
MinMaxScale Standardize Normalize RobustScale PowerTransformer QuantileTransformer Winsorization
5. Feature Selection
RBFSampler FeatureFilter ASFFS GeneticAlgorithm extra_trees_preproc_for_classification/ extra_trees_preproc_for_regression liblinear_svc_preprocessor polynomial select_percentile_classification/ select_percentile_regression select_rates_classification/ select_rates_regression truncatedSVD
6. Regression
AdaboostRegressor ARDRegression DecisionTree ExtraTreesRegressor GaussianProcess GradientBoosting KNearestNeighborsRegressor LibLinear_SVR LibSVM_SVR MLPRegressor RandomForest SGD
7. Classification
AdaboostClassifier BernoulliNB DecisionTree ExtraTreesClassifier GaussianNB GradientBoostingClassifier NearestNeighborsClassifier LDA LibLinear_SVC LibSVM_SVC MLPClassifier MultinomialNB PassiveAggressive QDA RandomForest SGD