Skip to content

Papple-F/csg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Training-free Composite Scene Generation for Layout-to-Image Synthesis

Jiaqi Liu1  Tao Huang1  Chang Xu1

1 Schoold of Computer Science, Faculty of Engineering, The University of Sydney

arXiv

Image Generation

The Layout-to-Image generation process requires a prompt, bounding boxes, and attending indices, which can be modified in generate.py. The outputs are saved as PNG files in the specified path. Configuration settings are located in config.py.

python generate.py

Evaluation

The method is evaluated using YOLOv7, available here. CLIP score measurement utilizes the model available here. A sample dataset with layouts of two objects, as described in the paper, is provided in the docs folder.

Citation

@misc{liu2024trainingfreecompositescenegeneration,
      title={Training-free Composite Scene Generation for Layout-to-Image Synthesis}, 
      author={Jiaqi Liu and Tao Huang and Chang Xu},
      year={2024},
      eprint={2407.13609},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2407.13609}, 
}

To Be Provided

  • Examples for generation

Acknowledgements

This research is supported in part by the Australian Research Council under Projects DP210101859 and FT230100549. This work is inspired by layout-guidance, BoxDiff, and Diffusers.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages