- [2024-12-12] Released an async version of LiteWebAgent for improved compatibility with FastAPI AI backends.
- [2024-12-11] Deployed LiteWebAgent’s frontend and backend on Vercel.
- [2024-12-03] zzfoo integrated AWM (Agent Workflow Memory) into the LiteWebAgent framework.
- [2024-11-25] We set up a Chrome extension prototype using LiteWebAgent as an AI backend server to control the Chrome browser via Chrome DevTools Protocol.
- [2024-11-01] We refactored LiteWebAgent's tree search into a new repository called LLMWebAgentTreeSearch.
- [2024-10-01] Completed a major refactoring of LiteWebAgent to make it flexible for importing the package, enabling the addition of web browsing capabilities to any AI agent.
- [2024-09-20] We reimplemented the paper Tree Search for Language Model Agents in the LiteWebAgent framework. Now, the search agent is capable of exploring different trajectories for accomplishing web browsing tasks and returning the most promising one. This is useful for finding the optimal path to complete complex web browsing tasks in an offline manner.
- [2024-08-22] The initial version of LiteWebAgent was released, providing a robust framework for using natural language to control a web agent.
From PyPI: https://pypi.org/project/litewebagent/
pip install litewebagent
Then, a required step is to setup playwright by running
playwright install chromium
Test playwright & chromium installation by running this script
python test_installation.py
Then please create a .env file, and update your API keys:
cp .env.example .env
You are ready to go! Try FunctionCallingAgent on google.com
python examples/google_test.py
Set up locally
First set up virtual environment, and allow your code to be able to see 'litewebagent'
python3.11 -m venv venv
. venv/bin/activate
pip3.11 install -e .
Then please create a .env file, and update your API keys:
cp .env.example .env
Test playwright & chromium installation by running this script
python3.11 test_installation.py
- use prompting-based web agent to finish some task and save the workflow
## easy case
python3.11 -m prompting_main --agent_type PromptAgent --starting_url https://www.google.com --goal 'search dining table' --plan 'search dining table' --log_folder log
## more complicated case
python3.11 -m prompting_main --agent_type PromptAgent --starting_url https://www.amazon.com/ --goal 'add a bag of dog food to the cart.' --plan 'add a bag of dog food to the cart.' --log_folder log
- we also provide function-calling-based web agent
## easy case
python3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.google.com --goal 'search dining table' --plan 'search dining table' --log_folder log
python3.11 -m function_calling_main --agent_type HighLevelPlanningAgent --starting_url https://www.google.com --goal 'search dining table' --plan 'search dining table' --log_folder log
python3.11 -m function_calling_main --agent_type ContextAwarePlanningAgent --starting_url https://www.google.com --goal 'search dining table' --plan 'search dining table' --log_folder log
## more complicated case
python3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.amazon.com/ --goal 'add a bag of dog food to the cart.' --plan 'add a bag of dog food to the cart.' --log_folder log
https://www.loom.com/share/1018bcc4e21c4a7eb517b60c2931ee3c https://www.loom.com/share/aa48256478714d098faac740239c9013 https://www.loom.com/share/89f5fa69b8cb49c8b6a60368ddcba103 https://www.loom.com/share/8c59dc1a6f264641b6a448fb6b7b4a5c
We use axtree by default. Alternatively, you can provide a comma-separated string listing the desired input feature types.
python3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.airbnb.com --goal 'set destination as San Francisco, then search the results' --plan '(1) enter the "San Francisco" as destination, (2) and click search' --log_folder log
python3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.airbnb.com --goal 'set destination as San Francisco, then search the results' --plan '(1) enter the "San Francisco" as destination, (2) and click search' --features interactive_elements --log_folder log
python3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.airbnb.com --goal 'set destination as San Francisco, then search the results' --plan '(1) enter the "San Francisco" as destination, (2) and click search' --features axtree,interactive_elements --log_folder log
First, tell Git to ignore future changes to state.json:
git update-index --skip-worktree state.json
Then run the load_state.py script and log into the websites to enable auto-login:
python3.11 load_state.py save
We integrated AWM (Agent Workflow Memory) into the LiteWebAgent framework. You can follow these three steps to include induced workflows as memory for the web agent, we use 'add a bag of dog food to the cart' on amazon website as an example:
Step 1: Induce workflows from mind2web datasets
python3.11 memory/mind2web_workflows_induction.py --websites amazon
Please note that you can induce workflows for multiple websites by passing a comma-separated list of website names to the --websites
parameter:
python3.11 memory/mind2web_workflows_induction.py --websites amazon,aa
Step 2: Embed and store workflows in DB for retrieval
python3.11 memory/update_vector_store.py
Step 3: Run function calling agent with memory
python3.11 -m function_calling_main --agent_type FunctionCallingAgent --starting_url https://www.amazon.com/ --goal 'add a bag of dog food to the cart.' --workflow_memory_website amazon
Start the Python backend server:
python3.11 -m api.server --port 5001
Paper | Agent |
---|---|
SoM (Set-of-Mark) Agent | PromptAgent |
Mind2Web | ContextAwarePlanningAgent |
Tree Search for Language Model Agents | LLMWebAgentTreeSearch |
Agent Workflow Memory | memory module |
Check how to set up a Chrome extension using LiteWebAgent as an AI backend server
https://www.loom.com/share/d2b03e39c13044d8b25fcf1644e88867
@misc{zhang2024litewebagent,
title={LiteWebAgent: The Library for LLM-based web-agent applications},
author={Danqing Zhang, Balaji Rama, Zhao Fu, Shiying He, Kunyu Chen, Jingyi Ni},
journal={https://github.com/PathOnAI/LiteWebAgent},
year={2024}
}