GraphQL backend using the following technologies:
- Python 3.11+
- Poetry to manage Python Virtual Environnement and dependencies.
- Docker to manage deployment in production and database in development.
- Postgresql as database choice.
- SQLAlchemy as ORM (Object Relational Mapper) library.
- Alembic to manage database migrations.
- Strawberry as GraphQL API Framework.
- FastAPI as Asynchronous Web Framework.
- Uvicorn as Asynchronous Web Server.
- Pytest as Test Framework.
- Sphinx to generate documentation from codebase.
You first need to create 2 configuration files:
- Create ./docker/docker.env file with as structure similar to ./docker/docker.example.env
- Create ./src/settings.ini file with a structure similar to ./src/settings.example.ini
If you wish to use docker-postgresql in dev, start it using the .dev compose file:
cd docker docker compose -f docker-compose.dev.yaml --env-file docker.env up # Optional, make a backup of production database sudo rsync -av --no-perms --delete --chown=$(whoami) ../obugs_postgres_data/ ~/obugs_postgres_save sudo chown -R $(whoami):$(whoami) ../obugs_postgres_save # And download it to use for your development tests sudo rsync -avz --stats --delete $(whoami)@<server>:~/obugs_postgres_save/ ../obugs_postgres_data sudo rm -rf ~/obugs_postgres_save
To run the code, using poetry:
# Make sure you have poetry python -m pip install pipx python -m pipx install poetry # Install dependencies poetry install --with docs,tests # Generate documentation cd docs poetry run sphinx-build . _build # Run tests cd src poetry run pytest # Get information about the virtual environment (to setup in your ide) poetry env info # Run cd src poetry run python main.py # If you want to remove your venv associated poetry env remove python
To generate a new database migration, use alembic:
poetry run alembic revision --autogenerate
If everything is properly setup (configuration files), its only a git pull and restart:
cd docker docker compose down git pull docker compose --env-file docker.env up --build -d