Skip to content

The imputation centric padestrain trajectory prediction dataset

License

Notifications You must be signed in to change notification settings

Pranav-chib/TrajImpute

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pedestrian Trajectory Prediction with Missing Data: Datasets, Imputation, and Benchmarking

This repo contains datasets and code files for Pedestrian Trajectory Prediction with Missing Data: Datasets, Imputation, and Benchmarking.

Table of Contents


TrajImpute Dataset

The dataset can be downloaded from Download Link. The structure of the TrajImpute dataset follows a dictionary format with specific keys as shown in /TrajImpute.png:

We use the same Dataloader for pedestrian trajectory generation as prior methods (referred from Social-GAN at https://github.com/agrimgupta92/sgan/blob/master/sgan/data/trajectories.py). Upon this data, we generate the missing observed trajectories. The missing value generation code is provided in data_generation.py.

python generate_data.py <data_test_file_path> <data_train_file_path> <data_val_file_path> <save_file_path>

Trajectory Imputataion Benchmarking

Results for Various Imputation Methods on Different Datasets

Results obtained for various imputation methods on the ETH-M, HOTEL-M, UNIV-M, ZARA1-M, and ZARA2-M subsets of TrajImpute with the easy protocol ($0 \leq \text{missing} \leq 4$) and the hard protocol ($4 \leq \text{missing} \leq 7$). The reported results show that SITES performs relatively better when imputing missing values. `M' refers to missing, indicating that the subset contains missing observed coordinates.

  • Code for the Transformer [Code .]
  • Code for the US-GAN [Code]
  • Code for the BRITS [Code]
  • Code for the M-RNN [Code]
  • Code for the TimesNet [Code]
  • Code for the SAITS [Code]
Datasets Methods Metrics Transformer US-GAN BRITS M-RNN TimesNet SAITS
ETH-M Easy-impute MAE 3.1318 0.6467 1.4287 5.2558 1.1353 0.5031
MSE 19.4576 1.8055 4.7339 35.3738 4.9441 0.9909
RMSE 4.4111 1.3437 2.1758 5.9476 2.2235 0.9954
MRE 0.5236 0.1081 0.2389 0.8787 0.1898 0.0841
ETH-M Hard-impute MAE 3.2249 3.0451 3.0371 5.3309 1.3656 0.9965
MSE 19.5948 18.0716 17.9457 35.5047 4.9937 2.5934
RMSE 4.7926 4.2511 4.2362 5.9965 2.5054 1.6104
MRE 0.5734 0.5100 0.5087 0.8962 0.2287 0.1669
HOTEL-M Easy-impute MAE 8.8847 2.6327 3.9033 3.2133 7.4037 2.1930
MSE 91.5550 13.5993 23.1058 20.0857 124.5438 8.7460
RMSE 9.5684 3.6877 4.8068 4.4817 11.1599 2.9574
MRE 2.9468 0.8732 1.2946 1.0658 2.4556 0.7274
HOTEL-M Hard-impute MAE 8.9096 7.8833 7.6057 3.2443 7.9484 2.6050
MSE 92.2607 75.9804 72.0169 20.2543 106.7010 16.0168
RMSE 9.6478 8.7167 8.4863 4.5005 11.3296 4.0021
MRE 2.8866 2.6127 2.5207 1.1686 2.6343 0.8634
UNIV-M Easy-impute MAE 3.0410 0.9158 1.0171 6.8380 0.6713 0.1939
MSE 14.0163 2.6297 2.9769 56.9715 0.7631 0.0697
RMSE 3.7438 1.6216 1.7254 7.5479 0.8736 0.2639
MRE 0.3905 0.1176 0.1306 0.8780 0.0862 0.0249
UNIV-M Hard-impute MAE 3.9795 1.9430 1.8028 6.9148 0.9421 0.6158
MSE 15.4244 6.1815 5.4057 57.6533 1.5827 0.6003
RMSE 3.9639 2.4863 2.3250 7.7268 1.2581 0.7748
MRE 1.0326 0.2495 0.2315 0.9751 0.1210 0.0791
ZARA1-M Easy-impute MAE 2.6288 0.4832 0.7307 5.1152 0.3125 0.2054
MSE 10.0109 0.8599 1.2306 34.9869 0.1768 0.0775
RMSE 3.1640 0.9273 1.1093 5.9150 0.4204 0.2784
MRE 0.4326 0.0795 0.1202 0.8417 0.0514 0.0338
ZARA1-M Hard-impute MAE 2.7532 2.2846 2.3140 5.1921 0.5699 0.6277
MSE 10.1228 7.8216 8.0351 35.7821 0.6327 0.8287
RMSE 3.1816 2.7967 2.8346 5.9976 0.7955 0.9103
MRE 0.4463 0.3756 0.3805 0.8673 0.0937 0.1032
ZARA2-M Easy-impute MAE 2.1301 0.3861 0.5556 5.0905 0.2409 0.1314
MSE 7.3276 0.6212 0.8292 31.5674 0.1329 0.0385
RMSE 2.7070 0.7882 0.9106 5.6185 0.3645 0.1963
MRE 0.3524 0.0639 0.0919 0.8422 0.0399 0.0217
ZARA2-M Hard-impute MAE 2.2840 1.8605 1.8051 5.1698 0.5031 0.3632
MSE 7.6342 5.8511 5.5953 32.3531 0.6525 0.4313
RMSE 2.8630 2.4189 2.3654 5.8994 0.8077 0.6567
MRE 0.3735 0.3041 0.2951 0.8465 0.0823 0.0593

Trajectory Prediction Benchmarking

Results obtained for various trajectory prediction methods on the imputed subsets of TrajImpute

We report the ADE/FDE for the trajectory prediction task on the clean, soft imputed, and hard imputed protocols. `Clean' refers to a subset with no missing coordinates. Performance degradation occurs when trajectory prediction is performed on the hard imputed subsets.

  • Code for the GraphTern [Code]
  • Code for the LBEBM-ET [Code]
  • Code for the SGCN-ET [Code]
  • Code for the EQmotion [Code]
  • Code for the TUTR [Code]
  • Code for the GPGraph [Code]
Datasets Baselines GraphTern LBEBM-ET SGCN-ET EQmotion TUTR GPGraph
ETH Clean 0.42/0.58 0.36/0.53 0.36/0.57 0.40/0.61 0.40/0.61 0.43/0.63
Easy-impute 0.77/0.74 0.37/0.55 0.42/0.71 0.46/0.62 0.54/0.73 0.45/0.75
Hard-impute 0.78/0.77 0.85/1.07 1.07/1.44 0.47/0.63 1.12/1.53 0.92/0.93
Hotel Clean 0.14/0.23 0.12/0.19 0.13/0.21 0.12/0.18 0.11/0.18 0.18/0.30
Easy-impute 0.15/0.25 0.13/0.20 0.14/0.23 0.65/0.68 1.31/1.66 0.19/0.31
Hard-impute 1.68/1.42 3.31/4.13 3.21/3.92 0.72/0.74 3.36/3.95 1.89/1.70
UNV Clean 0.26/0.45 0.24/0.43 0.24/0.43 0.23/0.43 0.23/0.42 0.24/0.42
Easy-impute 0.27/0.47 0.30/0.51 0.29/0.51 0.37/0.61 0.31/0.49 0.25/0.44
Hard-impute 0.50/0.51 0.64/1.01 0.77/1.21 0.39/0.70 0.59/0.85 0.53/0.50
ZARA1 Clean 0.21/0.37 0.19/0.33 0.20/0.35 0.18/0.32 0.18/0.34 0.17/0.31
Easy-impute 0.22/0.38 0.20/0.35 0.22/0.38 0.27/0.43 0.24/0.41 0.18/0.32
Hard-impute 0.96/1.25 0.37/0.60 0.61/0.97 0.28/0.44 0.50/0.77 0.58/0.45
ZARA2 Clean 0.17/0.29 0.14/0.24 0.15/0.26 0.13/0.23 0.13/0.25 0.15/0.29
Easy-impute 0.18/0.30 0.16/0.27 0.17/0.29 0.36/0.54 0.25/0.37 0.29/0.30
Hard-impute 0.37/0.44 0.27/0.43 0.41/0.63 0.37/0.55 0.33/0.50 0.36/0.34

About

The imputation centric padestrain trajectory prediction dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages