Skip to content

Commit

Permalink
Add transform function for Recommender (#522)
Browse files Browse the repository at this point in the history
* add transform function

* call model.transform() before each evaluation step
  • Loading branch information
tqtg authored Jul 25, 2023
1 parent 67c28bc commit f489b65
Show file tree
Hide file tree
Showing 2 changed files with 30 additions and 18 deletions.
21 changes: 11 additions & 10 deletions cornac/eval_methods/base_method.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ def rating_eval(model, metrics, test_set, user_based=False, verbose=False):
verbose: bool, optional, default: False
Output evaluation progress.
Returns
-------
res: (List, List)
Expand Down Expand Up @@ -79,7 +79,7 @@ def rating_eval(model, metrics, test_set, user_based=False, verbose=False):
miniters=100,
total=len(u_indices),
),
dtype='float',
dtype="float",
)

gt_mat = test_set.csr_matrix
Expand Down Expand Up @@ -177,7 +177,7 @@ def pos_items(csr_row):
if len(test_pos_items) == 0:
continue

u_gt_pos = np.zeros(test_set.num_items, dtype='int')
u_gt_pos = np.zeros(test_set.num_items, dtype="int")
u_gt_pos[test_pos_items] = 1

val_pos_items = [] if val_mat is None else pos_items(val_mat.getrow(user_idx))
Expand All @@ -187,7 +187,7 @@ def pos_items(csr_row):
else pos_items(train_mat.getrow(user_idx))
)

u_gt_neg = np.ones(test_set.num_items, dtype='int')
u_gt_neg = np.ones(test_set.num_items, dtype="int")
u_gt_neg[test_pos_items + val_pos_items + train_pos_items] = 0

item_indices = None if exclude_unknowns else np.arange(test_set.num_items)
Expand Down Expand Up @@ -585,8 +585,8 @@ def _build_modalities(self):

def add_modalities(self, **kwargs):
"""
Add successfully built modalities to all datasets. This is handy for
seperately built modalities that are not invoked in the build method.
Add successfully built modalities to all datasets. This is handy for
seperately built modalities that are not invoked in the build method.
"""
self.user_feature = kwargs.get("user_feature", None)
self.user_text = kwargs.get("user_text", None)
Expand Down Expand Up @@ -671,11 +671,11 @@ def evaluate(self, model, metrics, user_based, show_validation=True):
metrics: :obj:`iterable`
List of metrics.
user_based: bool, required
Evaluation strategy for the rating metrics. Whether results
user_based: bool, required
Evaluation strategy for the rating metrics. Whether results
are averaging based on number of users or number of ratings.
show_validation: bool, optional, default: True
show_validation: bool, optional, default: True
Whether to show the results on validation set (if exists).
Returns
Expand Down Expand Up @@ -707,6 +707,7 @@ def evaluate(self, model, metrics, user_based, show_validation=True):
print("\n[{}] Evaluation started!".format(model.name))

start = time.time()
model.transform(self.test_set)
test_result = self._eval(
model=model,
test_set=self.test_set,
Expand All @@ -720,6 +721,7 @@ def evaluate(self, model, metrics, user_based, show_validation=True):
val_result = None
if show_validation and self.val_set is not None:
start = time.time()
model.transform(self.val_set)
val_result = self._eval(
model=model, test_set=self.val_set, val_set=None, user_based=user_based
)
Expand Down Expand Up @@ -790,4 +792,3 @@ def from_splits(
return method.build(
train_data=train_data, test_data=test_data, val_data=val_data
)

27 changes: 19 additions & 8 deletions cornac/models/recommender.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,8 @@


class Recommender:
"""Generic class for a recommender model. All recommendation models should inherit from this class
"""Generic class for a recommender model. All recommendation models should inherit from this class
Parameters
----------------
name: str, required
Expand Down Expand Up @@ -138,9 +138,9 @@ def load(model_path, trainable=False):
provided, the latest model will be loaded.
trainable: boolean, optional, default: False
Set it to True if you would like to finetune the model. By default,
Set it to True if you would like to finetune the model. By default,
the model parameters are assumed to be fixed after being loaded.
Returns
-------
self : object
Expand Down Expand Up @@ -176,14 +176,27 @@ def fit(self, train_set, val_set=None):
self.val_set = None if val_set is None else val_set.reset()
return self

def transform(self, test_set):
"""Transform test set into cached results accelerating the score function.
This function is supposed to be called in the `cornac.eval_methods.BaseMethod`
before evaluation step. It is optional for this function to be implemented.
Parameters
----------
test_set: :obj:`cornac.data.Dataset`, required
User-Item preference data as well as additional modalities.
"""
pass

def score(self, user_idx, item_idx=None):
"""Predict the scores/ratings of a user for an item.
Parameters
----------
user_idx: int, required
The index of the user for whom to perform score prediction.
item_idx: int, optional, default: None
The index of the item for which to perform score prediction.
If None, scores for all known items will be returned.
Expand All @@ -197,9 +210,7 @@ def score(self, user_idx, item_idx=None):
raise NotImplementedError("The algorithm is not able to make score prediction!")

def default_score(self):
"""Overwrite this function if your algorithm has special treatment for cold-start problem
"""
"""Overwrite this function if your algorithm has special treatment for cold-start problem"""
return self.train_set.global_mean

def rate(self, user_idx, item_idx, clipping=True):
Expand Down

0 comments on commit f489b65

Please sign in to comment.