-
Notifications
You must be signed in to change notification settings - Fork 538
Description
Traceback (most recent call last):
File "C:\Users\win10\PycharmProjects\pythonProject\3he\25114\tabp.py", line 52, in
predictions_1 = reg.predict(ff1.values)
File "E:\anaconda\envs\tabpfn\lib\site-packages\tabpfn\regressor.py", line 624, in predict
for output, config in self.executor_.iter_outputs(
File "E:\anaconda\envs\tabpfn\lib\site-packages\tabpfn\inference.py", line 298, in iter_outputs
X_test = preprocessor.transform(X).X
File "E:\anaconda\envs\tabpfn\lib\site-packages\tabpfn\model\preprocessing.py", line 434, in transform
X, categorical_features = step.transform(X)
File "E:\anaconda\envs\tabpfn\lib\site-packages\tabpfn\model\preprocessing.py", line 367, in transform
result = self.transform(X, is_test=True)
File "E:\anaconda\envs\tabpfn\lib\site-packages\tabpfn\model\preprocessing.py", line 995, in transform
return self.transformer.transform(X[:, self.subsampled_features]) # type: ignore
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\utils_set_output.py", line 319, in wrapped
data_to_wrap = f(self, X, *args, **kwargs)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\compose_column_transformer.py", line 1101, in transform
Xs = self._call_func_on_transformers(
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\compose_column_transformer.py", line 910, in _call_func_on_transformers
return Parallel(n_jobs=self.n_jobs)(jobs)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\utils\parallel.py", line 77, in call
return super().call(iterable_with_config)
File "E:\anaconda\envs\tabpfn\lib\site-packages\joblib\parallel.py", line 1918, in call
return output if self.return_generator else list(output)
File "E:\anaconda\envs\tabpfn\lib\site-packages\joblib\parallel.py", line 1847, in _get_sequential_output
res = func(*args, **kwargs)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\utils\parallel.py", line 139, in call
return self.function(*args, **kwargs)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\pipeline.py", line 1531, in _transform_one
res = transformer.transform(X, **params.transform)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\pipeline.py", line 1092, in transform
Xt = transform.transform(Xt, **routed_params[name].transform)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\utils_set_output.py", line 319, in wrapped
data_to_wrap = f(self, X, *args, **kwargs)
File "E:\anaconda\envs\tabpfn\lib\site-packages\tabpfn\model\preprocessing.py", line 203, in transform
transformed_X = super().transform(X)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\utils_set_output.py", line 319, in wrapped
data_to_wrap = f(self, X, *args, **kwargs)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\preprocessing_data.py", line 3391, in transform
X = self._scaler.transform(X)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\utils_set_output.py", line 319, in wrapped
data_to_wrap = f(self, X, *args, **kwargs)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\preprocessing_data.py", line 1062, in transform
X = validate_data(
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\utils\validation.py", line 2944, in validate_data
out = check_array(X, input_name="X", **check_params)
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\utils\validation.py", line 1107, in check_array
_assert_all_finite(
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\utils\validation.py", line 120, in _assert_all_finite
_assert_all_finite_element_wise(
File "E:\anaconda\envs\tabpfn\lib\site-packages\sklearn\utils\validation.py", line 169, in _assert_all_finite_element_wise
raise ValueError(msg_err)
ValueError: Input X contains infinity or a value too large for dtype('float64').