Skip to content

107-zoom #138

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 5, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions monai/transforms/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,67 @@ def __call__(self, img):
prefilter=self.prefilter)


@export
class Zoom:
""" Zooms a nd image. Uses scipy.ndimage.zoom or cupyx.scipy.ndimage.zoom in case of gpu.
For details, please see https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html.

Args:
zoom (float or sequence): The zoom factor along the axes. If a float, zoom is the same for each axis.
If a sequence, zoom should contain one value for each axis.
order (int): order of interpolation. Default=3.
mode (str): Determines how input is extended beyond boundaries. Default is 'constant'.
cval (scalar, optional): Value to fill past edges. Default is 0.
use_gpu (bool): Should use cpu or gpu.
keep_size (bool): Should keep original size (pad if needed).
"""
def __init__(self, zoom, order=3, mode='constant', cval=0, prefilter=True, use_gpu=False, keep_size=False):
assert isinstance(order, int), "Order must be integer."
self.zoom = zoom
self.order = order
self.mode = mode
self.cval = cval
self.prefilter = prefilter
self.use_gpu = use_gpu
self.keep_size = keep_size

def __call__(self, img):
zoomed = None
if self.use_gpu:
try:
import cupy
from cupyx.scipy.ndimage import zoom as zoom_gpu

zoomed_gpu = zoom_gpu(cupy.array(img), zoom=self.zoom, order=self.order,
mode=self.mode, cval=self.cval, prefilter=self.prefilter)
zoomed = cupy.asnumpy()
except ModuleNotFoundError:
print('For GPU zoom, please install cupy. Defaulting to cpu.')
except Exception:
print('Warning: Zoom gpu failed. Defaulting to cpu.')

if not zoomed or not self.use_gpu:
zoomed = scipy.ndimage.zoom(img, zoom=self.zoom, order=self.order,
mode=self.mode, cval=self.cval, prefilter=self.prefilter)

# Crops to original size or pads.
if self.keep_size:
shape = img.shape
pad_vec = [[0, 0]] * len(shape)
crop_vec = list(zoomed.shape)
for d in range(len(shape)):
if zoomed.shape[d] > shape[d]:
crop_vec[d] = shape[d]
elif zoomed.shape[d] < shape[d]:
# pad_vec[d] = [0, shape[d] - zoomed.shape[d]]
pad_h = (float(shape[d]) - float(zoomed.shape[d])) / 2
pad_vec[d] = [int(np.floor(pad_h)), int(np.ceil(pad_h))]
zoomed = zoomed[0:crop_vec[0], 0:crop_vec[1], 0:crop_vec[2]]
zoomed = np.pad(zoomed, pad_vec, mode='constant', constant_values=self.cval)

return zoomed


@export
class ToTensor:
"""
Expand Down
64 changes: 64 additions & 0 deletions tests/test_zoom.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# Copyright 2020 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
from scipy.ndimage import zoom as zoom_scipy
from parameterized import parameterized

from monai.transforms import Zoom
from tests.utils import NumpyImageTestCase2D


class ZoomTest(NumpyImageTestCase2D):

@parameterized.expand([
(1.1, 3, 'constant', 0, True, False, False),
(0.9, 3, 'constant', 0, True, False, False),
(0.8, 1, 'reflect', 0, False, False, False)
])
def test_correct_results(self, zoom, order, mode, cval, prefilter, use_gpu, keep_size):
zoom_fn = Zoom(zoom=zoom, order=order, mode=mode, cval=cval,
prefilter=prefilter, use_gpu=use_gpu, keep_size=keep_size)
zoomed = zoom_fn(self.imt)
expected = zoom_scipy(self.imt, zoom=zoom, mode=mode, order=order,
cval=cval, prefilter=prefilter)
self.assertTrue(np.allclose(expected, zoomed))

@parameterized.expand([
("gpu_zoom", 0.6, 3, 'constant', 0, True)
])
def test_gpu_zoom(self, _, zoom, order, mode, cval, prefilter):
zoom_fn = Zoom(zoom=zoom, order=order, mode=mode, cval=cval,
prefilter=prefilter, use_gpu=True, keep_size=False)
zoomed = zoom_fn(self.imt)
expected = zoom_scipy(self.imt, zoom=zoom, mode=mode, order=order,
cval=cval, prefilter=prefilter)
self.assertTrue(np.allclose(expected, zoomed))

def test_keep_size(self):
zoom_fn = Zoom(zoom=0.6, keep_size=True)
zoomed = zoom_fn(self.imt)
self.assertTrue(np.array_equal(zoomed.shape, self.imt.shape))

@parameterized.expand([
("no_zoom", None, 1, TypeError),
("invalid_order", 0.9, 's', AssertionError)
])
def test_invalid_inputs(self, _, zoom, order, raises):
with self.assertRaises(raises):
zoom_fn = Zoom(zoom=zoom, order=order)
zoomed = zoom_fn(self.imt)


if __name__ == '__main__':
unittest.main()