Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

3922 Make UNETR support torchscript #3923

Merged
merged 3 commits into from
Mar 11, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 9 additions & 8 deletions monai/networks/nets/unetr.py
Original file line number Diff line number Diff line change
Expand Up @@ -179,24 +179,25 @@ def __init__(
res_block=res_block,
)
self.out = UnetOutBlock(spatial_dims=spatial_dims, in_channels=feature_size, out_channels=out_channels)
self.proj_axes = (0, spatial_dims + 1) + tuple(d + 1 for d in range(spatial_dims))
self.proj_view_shape = list(self.feat_size) + [self.hidden_size]

def proj_feat(self, x, hidden_size, feat_size):
new_view = (x.size(0), *feat_size, hidden_size)
def proj_feat(self, x):
new_view = [x.size(0)] + self.proj_view_shape
x = x.view(new_view)
new_axes = (0, len(x.shape) - 1) + tuple(d + 1 for d in range(len(feat_size)))
x = x.permute(new_axes).contiguous()
x = x.permute(self.proj_axes).contiguous()
return x

def forward(self, x_in):
x, hidden_states_out = self.vit(x_in)
enc1 = self.encoder1(x_in)
x2 = hidden_states_out[3]
enc2 = self.encoder2(self.proj_feat(x2, self.hidden_size, self.feat_size))
enc2 = self.encoder2(self.proj_feat(x2))
x3 = hidden_states_out[6]
enc3 = self.encoder3(self.proj_feat(x3, self.hidden_size, self.feat_size))
enc3 = self.encoder3(self.proj_feat(x3))
x4 = hidden_states_out[9]
enc4 = self.encoder4(self.proj_feat(x4, self.hidden_size, self.feat_size))
dec4 = self.proj_feat(x, self.hidden_size, self.feat_size)
enc4 = self.encoder4(self.proj_feat(x4))
dec4 = self.proj_feat(x)
dec3 = self.decoder5(dec4, enc4)
dec2 = self.decoder4(dec3, enc3)
dec1 = self.decoder3(dec2, enc2)
Expand Down
14 changes: 13 additions & 1 deletion tests/test_unetr.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@

from monai.networks import eval_mode
from monai.networks.nets.unetr import UNETR
from tests.utils import SkipIfBeforePyTorchVersion, test_script_save

TEST_CASE_UNETR = []
for dropout_rate in [0.4]:
Expand Down Expand Up @@ -52,7 +53,7 @@
TEST_CASE_UNETR.append(test_case)


class TestPatchEmbeddingBlock(unittest.TestCase):
class TestUNETR(unittest.TestCase):
@parameterized.expand(TEST_CASE_UNETR)
def test_shape(self, input_param, input_shape, expected_shape):
net = UNETR(**input_param)
Expand Down Expand Up @@ -117,6 +118,17 @@ def test_ill_arg(self):
dropout_rate=0.2,
)

@parameterized.expand(TEST_CASE_UNETR)
@SkipIfBeforePyTorchVersion((1, 9))
def test_script(self, input_param, input_shape, _):
net = UNETR(**(input_param))
net.eval()
with torch.no_grad():
torch.jit.script(net)

test_data = torch.randn(input_shape)
test_script_save(net, test_data)


if __name__ == "__main__":
unittest.main()
2 changes: 1 addition & 1 deletion tests/test_vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@
TEST_CASE_Vit.append(test_case)


class TestPatchEmbeddingBlock(unittest.TestCase):
class TestViT(unittest.TestCase):
@parameterized.expand(TEST_CASE_Vit)
def test_shape(self, input_param, input_shape, expected_shape):
net = ViT(**input_param)
Expand Down