Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make MetaTensor optional printed in DataStats and DataStatsd #5905 #7814

Merged
merged 16 commits into from
Sep 4, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions monai/transforms/utility/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -654,6 +654,7 @@ def __init__(
data_shape: bool = True,
value_range: bool = True,
data_value: bool = False,
meta_info: bool = False,
additional_info: Callable | None = None,
name: str = "DataStats",
) -> None:
Expand All @@ -665,6 +666,7 @@ def __init__(
value_range: whether to show the value range of input data.
data_value: whether to show the raw value of input data.
a typical example is to print some properties of Nifti image: affine, pixdim, etc.
meta_info: whether to show the data of MetaTensor.
additional_info: user can define callable function to extract additional info from input data.
name: identifier of `logging.logger` to use, defaulting to "DataStats".

Expand All @@ -679,6 +681,7 @@ def __init__(
self.data_shape = data_shape
self.value_range = value_range
self.data_value = data_value
self.meta_info = meta_info
if additional_info is not None and not callable(additional_info):
raise TypeError(f"additional_info must be None or callable but is {type(additional_info).__name__}.")
self.additional_info = additional_info
Expand All @@ -705,6 +708,7 @@ def __call__(
data_shape: bool | None = None,
value_range: bool | None = None,
data_value: bool | None = None,
meta_info: bool | None = None,
additional_info: Callable | None = None,
) -> NdarrayOrTensor:
"""
Expand All @@ -725,6 +729,8 @@ def __call__(
lines.append(f"Value range: (not a PyTorch or Numpy array, type: {type(img)})")
if self.data_value if data_value is None else data_value:
lines.append(f"Value: {img}")
if self.meta_info if meta_info is None else meta_info:
lines.append(f"Meta_Info: {MetaTensor(img).meta.__repr__()}")
slicepaste marked this conversation as resolved.
Show resolved Hide resolved
additional_info = self.additional_info if additional_info is None else additional_info
if additional_info is not None:
lines.append(f"Additional info: {additional_info(img)}")
Expand Down
28 changes: 25 additions & 3 deletions monai/transforms/utility/dictionary.py
Original file line number Diff line number Diff line change
Expand Up @@ -789,6 +789,7 @@ def __init__(
data_shape: Sequence[bool] | bool = True,
value_range: Sequence[bool] | bool = True,
data_value: Sequence[bool] | bool = False,
meta_info: Sequence[bool] | bool = False,
additional_info: Sequence[Callable] | Callable | None = None,
name: str = "DataStats",
allow_missing_keys: bool = False,
Expand All @@ -808,6 +809,8 @@ def __init__(
data_value: whether to show the raw value of input data.
it also can be a sequence of bool, each element corresponds to a key in ``keys``.
a typical example is to print some properties of Nifti image: affine, pixdim, etc.
meta_info: whether to show the data of MetaTensor.
it also can be a sequence of bool, each element corresponds to a key in ``keys``.
additional_info: user can define callable function to extract
additional info from input data. it also can be a sequence of string, each element
corresponds to a key in ``keys``.
Expand All @@ -821,15 +824,34 @@ def __init__(
self.data_shape = ensure_tuple_rep(data_shape, len(self.keys))
self.value_range = ensure_tuple_rep(value_range, len(self.keys))
self.data_value = ensure_tuple_rep(data_value, len(self.keys))
self.meta_info = ensure_tuple_rep(meta_info, len(self.keys))
self.additional_info = ensure_tuple_rep(additional_info, len(self.keys))
self.printer = DataStats(name=name)

def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> dict[Hashable, NdarrayOrTensor]:
d = dict(data)
for key, prefix, data_type, data_shape, value_range, data_value, additional_info in self.key_iterator(
d, self.prefix, self.data_type, self.data_shape, self.value_range, self.data_value, self.additional_info
for (
key,
prefix,
data_type,
data_shape,
value_range,
data_value,
meta_info,
additional_info,
) in self.key_iterator(
d,
self.prefix,
self.data_type,
self.data_shape,
self.value_range,
self.data_value,
self.meta_info,
self.additional_info,
):
d[key] = self.printer(d[key], prefix, data_type, data_shape, value_range, data_value, additional_info)
d[key] = self.printer(
d[key], prefix, data_type, data_shape, value_range, data_value, meta_info, additional_info
)
return d


Expand Down
44 changes: 42 additions & 2 deletions tests/test_data_stats.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
import torch
from parameterized import parameterized

from monai.data.meta_tensor import MetaTensor
from monai.transforms import DataStats

TEST_CASE_1 = [
Expand Down Expand Up @@ -130,20 +131,58 @@
]

TEST_CASE_8 = [
{
"prefix": "test data",
"data_type": True,
"data_shape": True,
"value_range": True,
"data_value": True,
"additional_info": np.mean,
"name": "DataStats",
},
np.array([[0, 1], [1, 2]]),
"test data statistics:\nType: <class 'numpy.ndarray'> int64\nShape: (2, 2)\nValue range: (0, 2)\n"
"Value: [[0 1]\n [1 2]]\nAdditional info: 1.0\n",
]

TEST_CASE_9 = [
np.array([[0, 1], [1, 2]]),
"test data statistics:\nType: <class 'numpy.ndarray'> int64\nShape: (2, 2)\nValue range: (0, 2)\n"
"Value: [[0 1]\n [1 2]]\n"
"Meta_Info: {affine: tensor([[1., 0., 0., 0.],\n"
" [0., 1., 0., 0.],\n"
" [0., 0., 1., 0.],\n"
" [0., 0., 0., 1.]], dtype=torch.float64), space: RAS}\n"
"Additional info: 1.0\n",
]

TEST_CASE_10 = [
MetaTensor(
torch.tensor([[0, 1], [1, 2]]),
affine=torch.as_tensor([[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 1]], dtype=torch.float64),
meta={"some": "info"},
),
"test data statistics:\nType: <class 'monai.data.meta_tensor.MetaTensor'> torch.int64\n"
"Shape: torch.Size([2, 2])\nValue range: (0, 2)\n"
"Value: tensor([[0, 1],\n [1, 2]])\n"
"Meta_Info: {'some': 'info', affine: tensor([[2., 0., 0., 0.],\n"
" [0., 2., 0., 0.],\n"
" [0., 0., 2., 0.],\n"
" [0., 0., 0., 1.]], dtype=torch.float64), space: RAS}\n"
"Additional info: 1.0\n",
]


class TestDataStats(unittest.TestCase):

@parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6, TEST_CASE_7])
@parameterized.expand(
[TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6, TEST_CASE_7, TEST_CASE_8]
)
def test_value(self, input_param, input_data, expected_print):
transform = DataStats(**input_param)
_ = transform(input_data)

@parameterized.expand([TEST_CASE_8])
@parameterized.expand([TEST_CASE_9, TEST_CASE_10])
def test_file(self, input_data, expected_print):
with tempfile.TemporaryDirectory() as tempdir:
filename = os.path.join(tempdir, "test_data_stats.log")
Expand All @@ -158,6 +197,7 @@ def test_file(self, input_data, expected_print):
"data_shape": True,
"value_range": True,
"data_value": True,
"meta_info": True,
"additional_info": np.mean,
"name": name,
}
Expand Down
57 changes: 55 additions & 2 deletions tests/test_data_statsd.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import torch
from parameterized import parameterized

from monai.data.meta_tensor import MetaTensor
from monai.transforms import DataStatsd

TEST_CASE_1 = [
Expand Down Expand Up @@ -150,22 +151,73 @@
]

TEST_CASE_9 = [
{
"keys": "img",
"prefix": "test data",
"data_shape": True,
"value_range": True,
"data_value": True,
"meta_info": True,
"additional_info": np.mean,
"name": "DataStats",
},
{"img": np.array([[0, 1], [1, 2]])},
"test data statistics:\nType: <class 'numpy.ndarray'> int64\nShape: (2, 2)\nValue range: (0, 2)\n"
"Value: [[0 1]\n [1 2]]\nAdditional info: 1.0\n",
]

TEST_CASE_10 = [
{"img": np.array([[0, 1], [1, 2]])},
"test data statistics:\nType: <class 'numpy.ndarray'> int64\nShape: (2, 2)\nValue range: (0, 2)\n"
"Value: [[0 1]\n [1 2]]\n"
"Meta_Info: {affine: tensor([[1., 0., 0., 0.],\n"
" [0., 1., 0., 0.],\n"
" [0., 0., 1., 0.],\n"
" [0., 0., 0., 1.]], dtype=torch.float64), space: RAS}\n"
"Additional info: 1.0\n",
]

TEST_CASE_11 = [
{
"img": (
MetaTensor(
torch.tensor([[0, 1], [1, 2]]),
affine=torch.as_tensor([[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 1]], dtype=torch.float64),
meta={"some": "info"},
)
)
},
"test data statistics:\nType: <class 'monai.data.meta_tensor.MetaTensor'> torch.int64\n"
"Shape: torch.Size([2, 2])\nValue range: (0, 2)\n"
"Value: tensor([[0, 1],\n [1, 2]])\n"
"Meta_Info: {'some': 'info', affine: tensor([[2., 0., 0., 0.],\n"
" [0., 2., 0., 0.],\n"
" [0., 0., 2., 0.],\n"
" [0., 0., 0., 1.]], dtype=torch.float64), space: RAS}\n"
"Additional info: 1.0\n",
]


class TestDataStatsd(unittest.TestCase):

@parameterized.expand(
[TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6, TEST_CASE_7, TEST_CASE_8]
[
TEST_CASE_1,
TEST_CASE_2,
TEST_CASE_3,
TEST_CASE_4,
TEST_CASE_5,
TEST_CASE_6,
TEST_CASE_7,
TEST_CASE_8,
TEST_CASE_9,
]
)
def test_value(self, input_param, input_data, expected_print):
transform = DataStatsd(**input_param)
_ = transform(input_data)

@parameterized.expand([TEST_CASE_9])
@parameterized.expand([TEST_CASE_10, TEST_CASE_11])
def test_file(self, input_data, expected_print):
with tempfile.TemporaryDirectory() as tempdir:
filename = os.path.join(tempdir, "test_stats.log")
Expand All @@ -180,6 +232,7 @@ def test_file(self, input_data, expected_print):
"data_shape": True,
"value_range": True,
"data_value": True,
"meta_info": True,
"additional_info": np.mean,
"name": name,
}
Expand Down
Loading