Skip to content

Commit

Permalink
Skip silence around hallucinations (openai#1838)
Browse files Browse the repository at this point in the history
* Add clip_timestamps option

* Add hallucination_silence_threshold option

* Fix typing for python < 3.9

---------

Co-authored-by: Jong Wook Kim <jongwook@openai.com>
  • Loading branch information
ryanheise and jongwook authored Dec 18, 2023
1 parent 8bc8860 commit ba3f3cd
Show file tree
Hide file tree
Showing 3 changed files with 153 additions and 19 deletions.
1 change: 1 addition & 0 deletions whisper/timing.py
Original file line number Diff line number Diff line change
Expand Up @@ -299,6 +299,7 @@ def add_word_timestamps(
word_durations = np.array([t.end - t.start for t in alignment])
word_durations = word_durations[word_durations.nonzero()]
median_duration = np.median(word_durations) if len(word_durations) > 0 else 0.0
median_duration = min(0.7, float(median_duration))
max_duration = median_duration * 2

# hack: truncate long words at sentence boundaries.
Expand Down
151 changes: 135 additions & 16 deletions whisper/transcribe.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
import os
import traceback
import warnings
from typing import TYPE_CHECKING, Optional, Tuple, Union
from typing import TYPE_CHECKING, List, Optional, Tuple, Union

import numpy as np
import torch
Expand All @@ -23,6 +23,7 @@
from .utils import (
exact_div,
format_timestamp,
get_end,
get_writer,
make_safe,
optional_float,
Expand All @@ -48,6 +49,8 @@ def transcribe(
word_timestamps: bool = False,
prepend_punctuations: str = "\"'“¿([{-",
append_punctuations: str = "\"'.。,,!!??::”)]}、",
clip_timestamps: Union[str, List[float]] = "0",
hallucination_silence_threshold: Optional[float] = None,
**decode_options,
):
"""
Expand Down Expand Up @@ -102,6 +105,14 @@ def transcribe(
decode_options: dict
Keyword arguments to construct `DecodingOptions` instances
clip_timestamps: Union[str, List[float]]
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process.
The last end timestamp defaults to the end of the file.
hallucination_silence_threshold: Optional[float]
When word_timestamps is True, skip silent periods longer than this threshold (in seconds)
when a possible hallucination is detected
Returns
-------
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
Expand All @@ -121,6 +132,7 @@ def transcribe(
# Pad 30-seconds of silence to the input audio, for slicing
mel = log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES)
content_frames = mel.shape[-1] - N_FRAMES
content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE)

if decode_options.get("language", None) is None:
if not model.is_multilingual:
Expand All @@ -147,6 +159,19 @@ def transcribe(
task=task,
)

if isinstance(clip_timestamps, str):
clip_timestamps = [
float(ts) for ts in (clip_timestamps.split(",") if clip_timestamps else [])
]
seek_points: List[int] = [round(ts * FRAMES_PER_SECOND) for ts in clip_timestamps]
if len(seek_points) == 0:
seek_points.append(0)
if len(seek_points) % 2 == 1:
seek_points.append(content_frames)
seek_clips: List[Tuple[int, int]] = list(zip(seek_points[::2], seek_points[1::2]))

punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、"

if word_timestamps and task == "translate":
warnings.warn("Word-level timestamps on translations may not be reliable.")

Expand Down Expand Up @@ -190,7 +215,8 @@ def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:

return decode_result

seek = 0
clip_idx = 0
seek = seek_clips[clip_idx][0]
input_stride = exact_div(
N_FRAMES, model.dims.n_audio_ctx
) # mel frames per output token: 2
Expand Down Expand Up @@ -229,10 +255,23 @@ def new_segment(
total=content_frames, unit="frames", disable=verbose is not False
) as pbar:
last_speech_timestamp = 0.0
while seek < content_frames:
# NOTE: This loop is obscurely flattened to make the diff readable.
# A later commit should turn this into a simpler nested loop.
# for seek_clip_start, seek_clip_end in seek_clips:
# while seek < seek_clip_end
while clip_idx < len(seek_clips):
seek_clip_start, seek_clip_end = seek_clips[clip_idx]
if seek < seek_clip_start:
seek = seek_clip_start
if seek >= seek_clip_end:
clip_idx += 1
if clip_idx < len(seek_clips):
seek = seek_clips[clip_idx][0]
continue
time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
mel_segment = mel[:, seek : seek + N_FRAMES]
segment_size = min(N_FRAMES, content_frames - seek)
window_end_time = float((seek + N_FRAMES) * HOP_LENGTH / SAMPLE_RATE)
segment_size = min(N_FRAMES, content_frames - seek, seek_clip_end - seek)
mel_segment = mel[:, seek : seek + segment_size]
segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)

Expand All @@ -257,6 +296,30 @@ def new_segment(
previous_seek = seek
current_segments = []

# anomalous words are very long/short/improbable
def word_anomaly_score(word: dict) -> float:
probability = word.get("probability", 0.0)
duration = word["end"] - word["start"]
score = 0.0
if probability < 0.15:
score += 1.0
if duration < 0.133:
score += (0.133 - duration) * 15
if duration > 2.0:
score += duration - 2.0
return score

def is_segment_anomaly(segment: Optional[dict]) -> bool:
if segment is None or not segment["words"]:
return False
words = [w for w in segment["words"] if w["word"] not in punctuation]
words = words[:8]
score = sum(word_anomaly_score(w) for w in words)
return score >= 3 or score + 0.01 >= len(words)

def next_words_segment(segments: List[dict]) -> Optional[dict]:
return next((s for s in segments if s["words"]), None)

timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]

Expand Down Expand Up @@ -330,17 +393,71 @@ def new_segment(
append_punctuations=append_punctuations,
last_speech_timestamp=last_speech_timestamp,
)
word_end_timestamps = [
w["end"] for s in current_segments for w in s["words"]
]
if len(word_end_timestamps) > 0:
last_speech_timestamp = word_end_timestamps[-1]
if not single_timestamp_ending and len(word_end_timestamps) > 0:
seek_shift = round(
(word_end_timestamps[-1] - time_offset) * FRAMES_PER_SECOND
)
if seek_shift > 0:
seek = previous_seek + seek_shift

if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
seek = round(last_word_end * FRAMES_PER_SECOND)

# skip silence before possible hallucinations
if hallucination_silence_threshold is not None:
threshold = hallucination_silence_threshold
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
remaining_duration = window_end_time - last_word_end
if remaining_duration > threshold:
seek = round(last_word_end * FRAMES_PER_SECOND)
else:
seek = previous_seek + segment_size

# if first segment might be a hallucination, skip leading silence
first_segment = next_words_segment(current_segments)
if first_segment is not None and is_segment_anomaly(first_segment):
gap = first_segment["start"] - time_offset
if gap > threshold:
seek = previous_seek + round(gap * FRAMES_PER_SECOND)
continue

# skip silence before any possible hallucination that is surrounded
# by silence or more hallucinations
hal_last_end = last_speech_timestamp
for si in range(len(current_segments)):
segment = current_segments[si]
if not segment["words"]:
continue
if is_segment_anomaly(segment):
next_segment = next_words_segment(
current_segments[si + 1 :]
)
if next_segment is not None:
hal_next_start = next_segment["words"][0]["start"]
else:
hal_next_start = time_offset + segment_duration
silence_before = (
segment["start"] - hal_last_end > threshold
or segment["start"] < threshold
or segment["start"] - time_offset < 2.0
)
silence_after = (
hal_next_start - segment["end"] > threshold
or is_segment_anomaly(next_segment)
or window_end_time - segment["end"] < 2.0
)
if silence_before and silence_after:
seek = round(
max(time_offset + 1, segment["start"])
* FRAMES_PER_SECOND
)
if content_duration - segment["end"] < threshold:
seek = content_frames
current_segments[si:] = []
break
hal_last_end = segment["end"]

last_word_end = get_end(current_segments)
if last_word_end is not None:
last_speech_timestamp = last_word_end

if verbose:
for segment in current_segments:
Expand Down Expand Up @@ -427,6 +544,8 @@ def valid_model_name(name):
parser.add_argument("--max_line_count", type=optional_int, default=None, help="(requires --word_timestamps True) the maximum number of lines in a segment")
parser.add_argument("--max_words_per_line", type=optional_int, default=None, help="(requires --word_timestamps True, no effect with --max_line_width) the maximum number of words in a segment")
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
parser.add_argument("--clip_timestamps", type=str, default="0", help="comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process, where the last end timestamp defaults to the end of the file")
parser.add_argument("--hallucination_silence_threshold", type=optional_float, help="(requires --word_timestamps True) skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected")
# fmt: on

args = parser.parse_args().__dict__
Expand Down
20 changes: 17 additions & 3 deletions whisper/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import re
import sys
import zlib
from typing import Callable, Optional, TextIO
from typing import Callable, List, Optional, TextIO

system_encoding = sys.getdefaultencoding()

Expand Down Expand Up @@ -68,6 +68,20 @@ def format_timestamp(
)


def get_start(segments: List[dict]) -> Optional[float]:
return next(
(w["start"] for s in segments for w in s["words"]),
segments[0]["start"] if segments else None,
)


def get_end(segments: List[dict]) -> Optional[float]:
return next(
(w["end"] for s in reversed(segments) for w in reversed(s["words"])),
segments[-1]["end"] if segments else None,
)


class ResultWriter:
extension: str

Expand Down Expand Up @@ -129,8 +143,8 @@ def iterate_subtitles():
line_len = 0
line_count = 1
# the next subtitle to yield (a list of word timings with whitespace)
subtitle: list[dict] = []
last = result["segments"][0]["words"][0]["start"]
subtitle: List[dict] = []
last: float = get_start(result["segments"]) or 0.0
for segment in result["segments"]:
chunk_index = 0
words_count = max_words_per_line
Expand Down

0 comments on commit ba3f3cd

Please sign in to comment.