Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

separate rules for transport demand and nodal energy totals #236

Merged
merged 5 commits into from
May 2, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 33 additions & 3 deletions Snakefile
Original file line number Diff line number Diff line change
Expand Up @@ -431,15 +431,45 @@ else:
build_retro_cost_output = {}


rule build_population_weighted_energy_totals:
input:
energy_totals='resources/energy_totals.csv',
clustered_pop_layout="resources/pop_layout_elec_s{simpl}_{clusters}.csv"
output: "resources/pop_weighted_energy_totals_s{simpl}_{clusters}.csv"
threads: 1
resources: mem_mb=2000
script: "scripts/build_population_weighted_energy_totals.py"


rule build_transport_demand:
input:
clustered_pop_layout="resources/pop_layout_elec_s{simpl}_{clusters}.csv",
pop_weighted_energy_totals="resources/pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
transport_data='resources/transport_data.csv',
traffic_data_KFZ="data/emobility/KFZ__count",
traffic_data_Pkw="data/emobility/Pkw__count",
temp_air_total="resources/temp_air_total_elec_s{simpl}_{clusters}.nc",
output:
transport_demand="resources/transport_demand_s{simpl}_{clusters}.csv",
transport_data="resources/transport_data_s{simpl}_{clusters}.csv",
avail_profile="resources/avail_profile_s{simpl}_{clusters}.csv",
dsm_profile="resources/dsm_profile_s{simpl}_{clusters}.csv"
threads: 1
resources: mem_mb=2000
script: "scripts/build_transport_demand.py"


rule prepare_sector_network:
input:
overrides="data/override_component_attrs",
network=pypsaeur('networks/elec_s{simpl}_{clusters}_ec_lv{lv}_{opts}.nc'),
energy_totals_name='resources/energy_totals.csv',
pop_weighted_energy_totals="resources/pop_weighted_energy_totals_s{simpl}_{clusters}.csv",
transport_demand="resources/transport_demand_s{simpl}_{clusters}.csv",
transport_data="resources/transport_data_s{simpl}_{clusters}.csv",
avail_profile="resources/avail_profile_s{simpl}_{clusters}.csv",
dsm_profile="resources/dsm_profile_s{simpl}_{clusters}.csv",
co2_totals_name='resources/co2_totals.csv',
transport_name='resources/transport_data.csv',
traffic_data_KFZ="data/emobility/KFZ__count",
traffic_data_Pkw="data/emobility/Pkw__count",
biomass_potentials='resources/biomass_potentials_s{simpl}_{clusters}.csv',
heat_profile="data/heat_load_profile_BDEW.csv",
costs=CDIR + "costs_{planning_horizons}.csv",
Expand Down
22 changes: 22 additions & 0 deletions scripts/build_population_weighted_energy_totals.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
"""Build population-weighted energy totals."""

import pandas as pd

if __name__ == '__main__':
if 'snakemake' not in globals():
from helper import mock_snakemake
snakemake = mock_snakemake(
'build_population_weighted_energy_totals',
simpl='',
clusters=48,
)

pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)

energy_totals = pd.read_csv(snakemake.input.energy_totals, index_col=0)

nodal_energy_totals = energy_totals.loc[pop_layout.ct].fillna(0.)
nodal_energy_totals.index = pop_layout.index
nodal_energy_totals = nodal_energy_totals.multiply(pop_layout.fraction, axis=0)

nodal_energy_totals.to_csv(snakemake.output[0])
201 changes: 201 additions & 0 deletions scripts/build_transport_demand.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
"""Build transport demand."""

import pandas as pd
import numpy as np
import xarray as xr
from helper import generate_periodic_profiles


def build_nodal_transport_data(fn, pop_layout):

transport_data = pd.read_csv(fn, index_col=0)

nodal_transport_data = transport_data.loc[pop_layout.ct].fillna(0.0)
nodal_transport_data.index = pop_layout.index
nodal_transport_data["number cars"] = (
pop_layout["fraction"] * nodal_transport_data["number cars"]
)
nodal_transport_data.loc[
nodal_transport_data["average fuel efficiency"] == 0.0,
"average fuel efficiency",
] = transport_data["average fuel efficiency"].mean()

return nodal_transport_data


def build_transport_demand(traffic_fn, airtemp_fn, nodes, nodal_transport_data):

## Get overall demand curve for all vehicles

traffic = pd.read_csv(
traffic_fn, skiprows=2, usecols=["count"], squeeze=True
)

transport_shape = generate_periodic_profiles(
dt_index=snapshots,
nodes=nodes,
weekly_profile=traffic.values,
)
transport_shape = transport_shape / transport_shape.sum()

# electric motors are more efficient, so alter transport demand

plug_to_wheels_eta = options["bev_plug_to_wheel_efficiency"]
battery_to_wheels_eta = plug_to_wheels_eta * options["bev_charge_efficiency"]

efficiency_gain = (
nodal_transport_data["average fuel efficiency"] / battery_to_wheels_eta
)

# get heating demand for correction to demand time series
temperature = xr.open_dataarray(airtemp_fn).to_pandas()

# correction factors for vehicle heating
dd_ICE = transport_degree_factor(
temperature,
options["transport_heating_deadband_lower"],
options["transport_heating_deadband_upper"],
options["ICE_lower_degree_factor"],
options["ICE_upper_degree_factor"],
)

dd_EV = transport_degree_factor(
temperature,
options["transport_heating_deadband_lower"],
options["transport_heating_deadband_upper"],
options["EV_lower_degree_factor"],
options["EV_upper_degree_factor"],
)

# divide out the heating/cooling demand from ICE totals
# and multiply back in the heating/cooling demand for EVs
ice_correction = (transport_shape * (1 + dd_ICE)).sum() / transport_shape.sum()

energy_totals_transport = (
pop_weighted_energy_totals["total road"]
+ pop_weighted_energy_totals["total rail"]
- pop_weighted_energy_totals["electricity rail"]
)

transport = (
(transport_shape.multiply(energy_totals_transport) * 1e6 * Nyears)
.divide(efficiency_gain * ice_correction)
.multiply(1 + dd_EV)
)

return transport


def transport_degree_factor(
temperature,
deadband_lower=15,
deadband_upper=20,
lower_degree_factor=0.5,
upper_degree_factor=1.6,
):
"""
Work out how much energy demand in vehicles increases due to heating and cooling.
There is a deadband where there is no increase.
Degree factors are % increase in demand compared to no heating/cooling fuel consumption.
Returns per unit increase in demand for each place and time
"""

dd = temperature.copy()

dd[(temperature > deadband_lower) & (temperature < deadband_upper)] = 0.0

dT_lower = deadband_lower - temperature[temperature < deadband_lower]
dd[temperature < deadband_lower] = lower_degree_factor / 100 * dT_lower

dT_upper = temperature[temperature > deadband_upper] - deadband_upper
dd[temperature > deadband_upper] = upper_degree_factor / 100 * dT_upper

return dd


def bev_availability_profile(fn, snapshots, nodes, options):
"""
Derive plugged-in availability for passenger electric vehicles.
"""

traffic = pd.read_csv(fn, skiprows=2, usecols=["count"], squeeze=True)

avail_max = options["bev_avail_max"]
avail_mean = options["bev_avail_mean"]

avail = avail_max - (avail_max - avail_mean) * (traffic - traffic.min()) / (
traffic.mean() - traffic.min()
)

avail_profile = generate_periodic_profiles(
dt_index=snapshots,
nodes=nodes,
weekly_profile=avail.values,
)

return avail_profile


def bev_dsm_profile(snapshots, nodes, options):

dsm_week = np.zeros((24 * 7,))

dsm_week[(np.arange(0, 7, 1) * 24 + options["bev_dsm_restriction_time"])] = options[
"bev_dsm_restriction_value"
]

dsm_profile = generate_periodic_profiles(
dt_index=snapshots,
nodes=nodes,
weekly_profile=dsm_week,
)

return dsm_profile


if __name__ == "__main__":
if "snakemake" not in globals():
from helper import mock_snakemake

snakemake = mock_snakemake(
"build_transport_demand",
simpl="",
clusters=48,
)

pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0)

nodes = pop_layout.index

pop_weighted_energy_totals = pd.read_csv(
snakemake.input.pop_weighted_energy_totals, index_col=0
)

options = snakemake.config["sector"]

snapshots = pd.date_range(freq='h', **snakemake.config["snapshots"], tz="UTC")

Nyears = 1

nodal_transport_data = build_nodal_transport_data(
snakemake.input.transport_data,
pop_layout
)

transport_demand = build_transport_demand(
snakemake.input.traffic_data_KFZ,
snakemake.input.temp_air_total,
nodes, nodal_transport_data
)

avail_profile = bev_availability_profile(
snakemake.input.traffic_data_Pkw,
snapshots, nodes, options
)

dsm_profile = bev_dsm_profile(snapshots, nodes, options)

nodal_transport_data.to_csv(snakemake.output.transport_data)
transport_demand.to_csv(snakemake.output.transport_demand)
avail_profile.to_csv(snakemake.output.avail_profile)
dsm_profile.to_csv(snakemake.output.dsm_profile)
24 changes: 23 additions & 1 deletion scripts/helper.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import os
import pytz
import pandas as pd
from pathlib import Path
from pypsa.descriptors import Dict
Expand Down Expand Up @@ -100,4 +101,25 @@ def progress_retrieve(url, file):
def dlProgress(count, blockSize, totalSize):
pbar.update( int(count * blockSize * 100 / totalSize) )

urllib.request.urlretrieve(url, file, reporthook=dlProgress)
urllib.request.urlretrieve(url, file, reporthook=dlProgress)


def generate_periodic_profiles(dt_index, nodes, weekly_profile, localize=None):
"""
Give a 24*7 long list of weekly hourly profiles, generate this for each
country for the period dt_index, taking account of time zones and summer time.
"""

weekly_profile = pd.Series(weekly_profile, range(24*7))

week_df = pd.DataFrame(index=dt_index, columns=nodes)

for node in nodes:
timezone = pytz.timezone(pytz.country_timezones[node[:2]][0])
tz_dt_index = dt_index.tz_convert(timezone)
week_df[node] = [24 * dt.weekday() + dt.hour for dt in tz_dt_index]
week_df[node] = week_df[node].map(weekly_profile)

week_df = week_df.tz_localize(localize)

return week_df
Loading