-
Notifications
You must be signed in to change notification settings - Fork 530
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add qp support for highs #3531
base: main
Are you sure you want to change the base?
add qp support for highs #3531
Changes from 10 commits
39f4392
823d882
2621b3e
0815a03
9bba7d0
1b42058
c659ccc
38a0a85
b289dac
6c4b7b1
891483e
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -96,6 +96,121 @@ def update(self): | |
self.highs.changeColCost(col_ndx, value(self.expr)) | ||
|
||
|
||
class _MutableQuadraticCoefficient: | ||
def __init__(self, expr, row_idx, col_idx): | ||
self.expr = expr | ||
self.row_idx = row_idx | ||
self.col_idx = col_idx | ||
|
||
|
||
class _MutableObjective: | ||
def __init__(self, highs, constant, linear_coefs, quadratic_coefs): | ||
self.highs = highs | ||
self.constant = constant | ||
self.linear_coefs = linear_coefs | ||
self.quadratic_coefs = quadratic_coefs | ||
self.last_quadratic_coef_values = [value(i.expr) for i in self.quadratic_coefs] | ||
# Store the quadratic coefficients in dictionary format | ||
self.quad_coef_dict = {} | ||
self._initialize_quad_coef_dict() | ||
# Flag to force first update of quadratic coefficients | ||
self._first_update = True | ||
|
||
def _initialize_quad_coef_dict(self): | ||
for coef in self.quadratic_coefs: | ||
v1_ndx = coef.row_idx | ||
v2_ndx = coef.col_idx | ||
# Ensure we're storing the lower triangular part | ||
row = max(v1_ndx, v2_ndx) | ||
col = min(v1_ndx, v2_ndx) | ||
|
||
coef_val = value(coef.expr) | ||
# Adjust for diagonal elements | ||
if v1_ndx == v2_ndx: | ||
coef_val *= 2.0 | ||
|
||
self.quad_coef_dict[(row, col)] = coef_val | ||
|
||
def update(self): | ||
""" | ||
Update the quadratic objective expression. | ||
""" | ||
needs_quadratic_update = self._first_update | ||
|
||
self.constant.update() | ||
for coef in self.linear_coefs: | ||
coef.update() | ||
|
||
for ndx, coef in enumerate(self.quadratic_coefs): | ||
current_val = value(coef.expr) | ||
if current_val != self.last_quadratic_coef_values[ndx]: | ||
needs_quadratic_update = True | ||
|
||
v1_ndx = coef.row_idx | ||
v2_ndx = coef.col_idx | ||
row = max(v1_ndx, v2_ndx) | ||
col = min(v1_ndx, v2_ndx) | ||
|
||
# Adjust the diagonal to match Highs' expected format | ||
if v1_ndx == v2_ndx: | ||
current_val *= 2.0 | ||
|
||
self.quad_coef_dict[(row, col)] = current_val | ||
|
||
self.last_quadratic_coef_values[ndx] = current_val | ||
|
||
# If anything changed, rebuild and pass the Hessian | ||
if needs_quadratic_update: | ||
self._build_and_pass_hessian() | ||
self._first_update = False | ||
|
||
def _build_and_pass_hessian(self): | ||
"""Build and pass the Hessian to HiGHS in CSC format""" | ||
if not self.quad_coef_dict: | ||
return | ||
|
||
dim = self.highs.getNumCol() | ||
|
||
# Build CSC format for the lower triangular part | ||
q_value = [] | ||
q_index = [] | ||
q_start = [0] * dim | ||
|
||
sorted_entries = sorted( | ||
self.quad_coef_dict.items(), key=lambda x: (x[0][1], x[0][0]) | ||
) | ||
|
||
last_col = -1 | ||
for (row, col), val in sorted_entries: | ||
while col > last_col: | ||
last_col += 1 | ||
if last_col < dim: | ||
q_start[last_col] = len(q_value) | ||
|
||
# Add the entry | ||
q_index.append(row) | ||
q_value.append(val) | ||
|
||
while last_col < dim - 1: | ||
last_col += 1 | ||
q_start[last_col] = len(q_value) | ||
|
||
nnz = len(q_value) | ||
status = self.highs.passHessian( | ||
dim, | ||
nnz, | ||
highspy.HessianFormat.kTriangular, | ||
np.array(q_start, dtype=np.int32), | ||
np.array(q_index, dtype=np.int32), | ||
np.array(q_value, dtype=np.double), | ||
) | ||
|
||
if status != highspy.HighsStatus.kOk: | ||
logger.warning( | ||
f"HiGHS returned non-OK status when passing Hessian: {status}" | ||
) | ||
|
||
|
||
class _MutableObjectiveOffset: | ||
def __init__(self, expr, highs): | ||
self.expr = expr | ||
|
@@ -141,7 +256,6 @@ def __init__(self, **kwds): | |
self._solver_con_to_pyomo_con_map = {} | ||
self._mutable_helpers = {} | ||
self._mutable_bounds = {} | ||
self._objective_helpers = [] | ||
self._last_results_object: Optional[Results] = None | ||
self._sol = None | ||
|
||
|
@@ -472,22 +586,26 @@ def update_parameters(self): | |
self._sol = None | ||
if self._last_results_object is not None: | ||
self._last_results_object.solution_loader.invalidate() | ||
|
||
for con, helpers in self._mutable_helpers.items(): | ||
for helper in helpers: | ||
helper.update() | ||
for k, (v, helper) in self._mutable_bounds.items(): | ||
helper.update() | ||
for helper in self._objective_helpers: | ||
helper.update() | ||
|
||
self._mutable_objective.update() | ||
|
||
def _set_objective(self, obj): | ||
self._sol = None | ||
if self._last_results_object is not None: | ||
self._last_results_object.solution_loader.invalidate() | ||
n = len(self._pyomo_var_to_solver_var_map) | ||
indices = np.arange(n) | ||
costs = np.zeros(n, dtype=np.double) | ||
self._objective_helpers = [] | ||
|
||
# Initialize empty lists for all coefficient types | ||
mutable_linear_coefficients = [] | ||
mutable_quadratic_coefficients = [] | ||
|
||
if obj is None: | ||
sense = highspy.ObjSense.kMinimize | ||
self._solver_model.changeObjectiveOffset(0) | ||
|
@@ -500,9 +618,9 @@ def _set_objective(self, obj): | |
raise ValueError(f'Objective sense is not recognized: {obj.sense}') | ||
|
||
repn = generate_standard_repn( | ||
obj.expr, quadratic=False, compute_values=False | ||
obj.expr, quadratic=True, compute_values=False | ||
) | ||
if repn.nonlinear_expr is not None: | ||
if repn.nonlinear_expr is not None or repn.polynomial_degree() > 2: | ||
raise IncompatibleModelError( | ||
f'Highs interface does not support expressions of degree {repn.polynomial_degree()}' | ||
) | ||
|
@@ -518,17 +636,35 @@ def _set_objective(self, obj): | |
expr=coef, | ||
highs=self._solver_model, | ||
) | ||
self._objective_helpers.append(mutable_objective_coef) | ||
mutable_linear_coefficients.append(mutable_objective_coef) | ||
|
||
self._solver_model.changeObjectiveOffset(value(repn.constant)) | ||
if not is_constant(repn.constant): | ||
mutable_objective_offset = _MutableObjectiveOffset( | ||
expr=repn.constant, highs=self._solver_model | ||
) | ||
self._objective_helpers.append(mutable_objective_offset) | ||
mutable_constant = _MutableObjectiveOffset( | ||
expr=repn.constant, highs=self._solver_model | ||
) | ||
|
||
if repn.quadratic_vars and len(repn.quadratic_vars) > 0: | ||
for ndx, (v1, v2) in enumerate(repn.quadratic_vars): | ||
v1_id = id(v1) | ||
v2_id = id(v2) | ||
v1_ndx = self._pyomo_var_to_solver_var_map[v1_id] | ||
v2_ndx = self._pyomo_var_to_solver_var_map[v2_id] | ||
|
||
coef = repn.quadratic_coefs[ndx] | ||
|
||
mutable_quadratic_coefficients.append( | ||
_MutableQuadraticCoefficient( | ||
expr=coef, row_idx=v1_ndx, col_idx=v2_ndx | ||
) | ||
) | ||
|
||
self._solver_model.changeObjectiveSense(sense) | ||
self._solver_model.changeColsCost(n, indices, costs) | ||
self._mutable_objective = _MutableObjective( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. the idea here is we collect all the mutable objective terms and update them once through _mutable_objective.update() |
||
self._solver_model, | ||
mutable_constant, | ||
mutable_linear_coefficients, | ||
mutable_quadratic_coefficients, | ||
) | ||
self._mutable_objective.update() | ||
|
||
def _postsolve(self): | ||
config = self._active_config | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
# ___________________________________________________________________________ | ||
# | ||
# Pyomo: Python Optimization Modeling Objects | ||
# Copyright (c) 2008-2025 | ||
# National Technology and Engineering Solutions of Sandia, LLC | ||
# Under the terms of Contract DE-NA0003525 with National Technology and | ||
# Engineering Solutions of Sandia, LLC, the U.S. Government retains certain | ||
# rights in this software. | ||
# This software is distributed under the 3-clause BSD License. | ||
# ___________________________________________________________________________ | ||
|
||
import subprocess | ||
import sys | ||
|
||
import pyomo.common.unittest as unittest | ||
import pyomo.environ as pe | ||
|
||
from pyomo.contrib.solver.solvers.highs import Highs | ||
from pyomo.common.log import LoggingIntercept | ||
from pyomo.common.tee import capture_output | ||
|
||
opt = Highs() | ||
if not opt.available(): | ||
raise unittest.SkipTest | ||
|
||
|
||
class TestBugs(unittest.TestCase): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @mrmundt I have copied the test cases that are passing from the legacy appsi_highs. I am not sure if you wanted to leave the test cases for a later stage, let me know if I should remove them (I do need the new qp test cases though) |
||
def test_mutable_params_with_remove_cons(self): | ||
m = pe.ConcreteModel() | ||
m.x = pe.Var(bounds=(-10, 10)) | ||
m.y = pe.Var() | ||
|
||
m.p1 = pe.Param(mutable=True) | ||
m.p2 = pe.Param(mutable=True) | ||
|
||
m.obj = pe.Objective(expr=m.y) | ||
m.c1 = pe.Constraint(expr=m.y >= m.x + m.p1) | ||
m.c2 = pe.Constraint(expr=m.y >= -m.x + m.p2) | ||
|
||
m.p1.value = 1 | ||
m.p2.value = 1 | ||
|
||
opt = Highs() | ||
res = opt.solve(m) | ||
self.assertAlmostEqual(res.objective_bound, 1) | ||
|
||
del m.c1 | ||
m.p2.value = 2 | ||
res = opt.solve(m) | ||
self.assertAlmostEqual(res.objective_bound, -8) | ||
|
||
def test_mutable_params_with_remove_vars(self): | ||
m = pe.ConcreteModel() | ||
m.x = pe.Var() | ||
m.y = pe.Var() | ||
|
||
m.p1 = pe.Param(mutable=True) | ||
m.p2 = pe.Param(mutable=True) | ||
|
||
m.y.setlb(m.p1) | ||
m.y.setub(m.p2) | ||
|
||
m.obj = pe.Objective(expr=m.y) | ||
m.c1 = pe.Constraint(expr=m.y >= m.x + 1) | ||
m.c2 = pe.Constraint(expr=m.y >= -m.x + 1) | ||
|
||
m.p1.value = -10 | ||
m.p2.value = 10 | ||
|
||
opt = Highs() | ||
res = opt.solve(m) | ||
self.assertAlmostEqual(res.objective_bound, 1) | ||
|
||
del m.c1 | ||
del m.c2 | ||
m.p1.value = -9 | ||
m.p2.value = 9 | ||
res = opt.solve(m) | ||
self.assertAlmostEqual(res.objective_bound, -9) | ||
|
||
def test_fix_and_unfix(self): | ||
# Tests issue https://github.com/Pyomo/pyomo/issues/3127 | ||
|
||
m = pe.ConcreteModel() | ||
m.x = pe.Var(domain=pe.Binary) | ||
m.y = pe.Var(domain=pe.Binary) | ||
m.fx = pe.Var(domain=pe.NonNegativeReals) | ||
m.fy = pe.Var(domain=pe.NonNegativeReals) | ||
m.c1 = pe.Constraint(expr=m.fx <= m.x) | ||
m.c2 = pe.Constraint(expr=m.fy <= m.y) | ||
m.c3 = pe.Constraint(expr=m.x + m.y <= 1) | ||
|
||
m.obj = pe.Objective(expr=m.fx * 0.5 + m.fy * 0.4, sense=pe.maximize) | ||
|
||
opt = Highs() | ||
|
||
# solution 1 has m.x == 1 and m.y == 0 | ||
r = opt.solve(m) | ||
self.assertAlmostEqual(m.fx.value, 1, places=5) | ||
self.assertAlmostEqual(m.fy.value, 0, places=5) | ||
self.assertAlmostEqual(r.objective_bound, 0.5, places=5) | ||
|
||
# solution 2 has m.x == 0 and m.y == 1 | ||
m.y.fix(1) | ||
r = opt.solve(m) | ||
self.assertAlmostEqual(m.fx.value, 0, places=5) | ||
self.assertAlmostEqual(m.fy.value, 1, places=5) | ||
self.assertAlmostEqual(r.objective_bound, 0.4, places=5) | ||
|
||
# solution 3 should be equal solution 1 | ||
m.y.unfix() | ||
m.x.fix(1) | ||
r = opt.solve(m) | ||
self.assertAlmostEqual(m.fx.value, 1, places=5) | ||
self.assertAlmostEqual(m.fy.value, 0, places=5) | ||
self.assertAlmostEqual(r.objective_bound, 0.5, places=5) | ||
|
||
def test_qp1(self): | ||
# test issue #3381 | ||
m = pe.ConcreteModel() | ||
|
||
m.x1 = pe.Var(name='x1', domain=pe.Reals) | ||
m.x2 = pe.Var(name='x2', domain=pe.Reals) | ||
|
||
# Quadratic Objective function | ||
m.obj = pe.Objective(expr=m.x1 * m.x1 + m.x2 * m.x2, sense=pe.minimize) | ||
|
||
m.con1 = pe.Constraint(expr=m.x1 >= 1) | ||
m.con2 = pe.Constraint(expr=m.x2 >= 1) | ||
|
||
results = opt.solve(m) | ||
self.assertAlmostEqual(m.x1.value, 1, places=5) | ||
self.assertAlmostEqual(m.x2.value, 1, places=5) | ||
self.assertEqual(results.objective_bound, 2) | ||
|
||
def test_qp2(self): | ||
# test issue #3381 | ||
m = pe.ConcreteModel() | ||
|
||
m.x1 = pe.Var(name='x1', domain=pe.Reals) | ||
m.x2 = pe.Var(name='x2', domain=pe.Reals) | ||
|
||
m.p = pe.Param(initialize=1, mutable=True) | ||
|
||
m.obj = pe.Objective( | ||
expr=m.p * m.x1 * m.x1 + m.x2 * m.x2 - m.x1 * m.x2, sense=pe.minimize | ||
) | ||
|
||
m.con1 = pe.Constraint(expr=m.x1 >= 1) | ||
m.con2 = pe.Constraint(expr=m.x2 >= 1) | ||
|
||
opt.set_instance(m) | ||
results = opt.solve(m) | ||
self.assertAlmostEqual(m.x1.value, 1, places=5) | ||
self.assertAlmostEqual(m.x2.value, 1, places=5) | ||
self.assertEqual(results.objective_bound, 1) | ||
|
||
m.p.value = 2.0 | ||
opt.update_parameters() | ||
results = opt.solve(m) | ||
self.assertAlmostEqual(m.x1.value, 1, places=5) | ||
self.assertAlmostEqual(m.x2.value, 1, places=5) | ||
self.assertEqual(results.objective_bound, 2) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@emma58 I have tried to emulate the new gurobi_persistent and use a similar objective data structure. However, highs quadratic objective handling is too different so I could not make it fit as nicely as I would have hoped. To avoid always calling passHessian at each update I first check against the last set of coefficients, let me know if you think there's a better way