Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add qp support for highs #3531

Open
wants to merge 11 commits into
base: main
Choose a base branch
from
1 change: 0 additions & 1 deletion pyomo/contrib/appsi/solvers/tests/test_highs_persistent.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@
from pyomo.common.log import LoggingIntercept
from pyomo.common.tee import capture_output
from pyomo.contrib.appsi.solvers.highs import Highs
from pyomo.contrib.appsi.base import TerminationCondition


opt = Highs()
Expand Down
166 changes: 151 additions & 15 deletions pyomo/contrib/solver/solvers/highs.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,121 @@ def update(self):
self.highs.changeColCost(col_ndx, value(self.expr))


class _MutableQuadraticCoefficient:
def __init__(self, expr, row_idx, col_idx):
self.expr = expr
self.row_idx = row_idx
self.col_idx = col_idx


class _MutableObjective:
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@emma58 I have tried to emulate the new gurobi_persistent and use a similar objective data structure. However, highs quadratic objective handling is too different so I could not make it fit as nicely as I would have hoped. To avoid always calling passHessian at each update I first check against the last set of coefficients, let me know if you think there's a better way

def __init__(self, highs, constant, linear_coefs, quadratic_coefs):
self.highs = highs
self.constant = constant
self.linear_coefs = linear_coefs
self.quadratic_coefs = quadratic_coefs
self.last_quadratic_coef_values = [value(i.expr) for i in self.quadratic_coefs]
# Store the quadratic coefficients in dictionary format
self.quad_coef_dict = {}
self._initialize_quad_coef_dict()
# Flag to force first update of quadratic coefficients
self._first_update = True

def _initialize_quad_coef_dict(self):
for coef in self.quadratic_coefs:
v1_ndx = coef.row_idx
v2_ndx = coef.col_idx
# Ensure we're storing the lower triangular part
row = max(v1_ndx, v2_ndx)
col = min(v1_ndx, v2_ndx)

coef_val = value(coef.expr)
# Adjust for diagonal elements
if v1_ndx == v2_ndx:
coef_val *= 2.0

self.quad_coef_dict[(row, col)] = coef_val

def update(self):
"""
Update the quadratic objective expression.
"""
needs_quadratic_update = self._first_update

self.constant.update()
for coef in self.linear_coefs:
coef.update()

for ndx, coef in enumerate(self.quadratic_coefs):
current_val = value(coef.expr)
if current_val != self.last_quadratic_coef_values[ndx]:
needs_quadratic_update = True

v1_ndx = coef.row_idx
v2_ndx = coef.col_idx
row = max(v1_ndx, v2_ndx)
col = min(v1_ndx, v2_ndx)

# Adjust the diagonal to match Highs' expected format
if v1_ndx == v2_ndx:
current_val *= 2.0

self.quad_coef_dict[(row, col)] = current_val

self.last_quadratic_coef_values[ndx] = current_val

# If anything changed, rebuild and pass the Hessian
if needs_quadratic_update:
self._build_and_pass_hessian()
self._first_update = False

def _build_and_pass_hessian(self):
"""Build and pass the Hessian to HiGHS in CSC format"""
if not self.quad_coef_dict:
return

dim = self.highs.getNumCol()

# Build CSC format for the lower triangular part
q_value = []
q_index = []
q_start = [0] * dim

sorted_entries = sorted(
self.quad_coef_dict.items(), key=lambda x: (x[0][1], x[0][0])
)

last_col = -1
for (row, col), val in sorted_entries:
while col > last_col:
last_col += 1
if last_col < dim:
q_start[last_col] = len(q_value)

# Add the entry
q_index.append(row)
q_value.append(val)

while last_col < dim - 1:
last_col += 1
q_start[last_col] = len(q_value)

nnz = len(q_value)
status = self.highs.passHessian(
dim,
nnz,
highspy.HessianFormat.kTriangular,
np.array(q_start, dtype=np.int32),
np.array(q_index, dtype=np.int32),
np.array(q_value, dtype=np.double),
)

if status != highspy.HighsStatus.kOk:
logger.warning(
f"HiGHS returned non-OK status when passing Hessian: {status}"
)


class _MutableObjectiveOffset:
def __init__(self, expr, highs):
self.expr = expr
Expand Down Expand Up @@ -141,7 +256,6 @@ def __init__(self, **kwds):
self._solver_con_to_pyomo_con_map = {}
self._mutable_helpers = {}
self._mutable_bounds = {}
self._objective_helpers = []
self._last_results_object: Optional[Results] = None
self._sol = None

Expand Down Expand Up @@ -472,22 +586,26 @@ def update_parameters(self):
self._sol = None
if self._last_results_object is not None:
self._last_results_object.solution_loader.invalidate()

for con, helpers in self._mutable_helpers.items():
for helper in helpers:
helper.update()
for k, (v, helper) in self._mutable_bounds.items():
helper.update()
for helper in self._objective_helpers:
helper.update()

self._mutable_objective.update()

def _set_objective(self, obj):
self._sol = None
if self._last_results_object is not None:
self._last_results_object.solution_loader.invalidate()
n = len(self._pyomo_var_to_solver_var_map)
indices = np.arange(n)
costs = np.zeros(n, dtype=np.double)
self._objective_helpers = []

# Initialize empty lists for all coefficient types
mutable_linear_coefficients = []
mutable_quadratic_coefficients = []

if obj is None:
sense = highspy.ObjSense.kMinimize
self._solver_model.changeObjectiveOffset(0)
Expand All @@ -500,9 +618,9 @@ def _set_objective(self, obj):
raise ValueError(f'Objective sense is not recognized: {obj.sense}')

repn = generate_standard_repn(
obj.expr, quadratic=False, compute_values=False
obj.expr, quadratic=True, compute_values=False
)
if repn.nonlinear_expr is not None:
if repn.nonlinear_expr is not None or repn.polynomial_degree() > 2:
raise IncompatibleModelError(
f'Highs interface does not support expressions of degree {repn.polynomial_degree()}'
)
Expand All @@ -518,17 +636,35 @@ def _set_objective(self, obj):
expr=coef,
highs=self._solver_model,
)
self._objective_helpers.append(mutable_objective_coef)
mutable_linear_coefficients.append(mutable_objective_coef)

self._solver_model.changeObjectiveOffset(value(repn.constant))
if not is_constant(repn.constant):
mutable_objective_offset = _MutableObjectiveOffset(
expr=repn.constant, highs=self._solver_model
)
self._objective_helpers.append(mutable_objective_offset)
mutable_constant = _MutableObjectiveOffset(
expr=repn.constant, highs=self._solver_model
)

if repn.quadratic_vars and len(repn.quadratic_vars) > 0:
for ndx, (v1, v2) in enumerate(repn.quadratic_vars):
v1_id = id(v1)
v2_id = id(v2)
v1_ndx = self._pyomo_var_to_solver_var_map[v1_id]
v2_ndx = self._pyomo_var_to_solver_var_map[v2_id]

coef = repn.quadratic_coefs[ndx]

mutable_quadratic_coefficients.append(
_MutableQuadraticCoefficient(
expr=coef, row_idx=v1_ndx, col_idx=v2_ndx
)
)

self._solver_model.changeObjectiveSense(sense)
self._solver_model.changeColsCost(n, indices, costs)
self._mutable_objective = _MutableObjective(
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the idea here is we collect all the mutable objective terms and update them once through _mutable_objective.update()

self._solver_model,
mutable_constant,
mutable_linear_coefficients,
mutable_quadratic_coefficients,
)
self._mutable_objective.update()

def _postsolve(self):
config = self._active_config
Expand Down
163 changes: 163 additions & 0 deletions pyomo/contrib/solver/tests/solvers/test_highs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
# ___________________________________________________________________________
#
# Pyomo: Python Optimization Modeling Objects
# Copyright (c) 2008-2025
# National Technology and Engineering Solutions of Sandia, LLC
# Under the terms of Contract DE-NA0003525 with National Technology and
# Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
# rights in this software.
# This software is distributed under the 3-clause BSD License.
# ___________________________________________________________________________

import subprocess
import sys

import pyomo.common.unittest as unittest
import pyomo.environ as pe

from pyomo.contrib.solver.solvers.highs import Highs
from pyomo.common.log import LoggingIntercept
from pyomo.common.tee import capture_output

opt = Highs()
if not opt.available():
raise unittest.SkipTest


class TestBugs(unittest.TestCase):
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@mrmundt I have copied the test cases that are passing from the legacy appsi_highs. I am not sure if you wanted to leave the test cases for a later stage, let me know if I should remove them (I do need the new qp test cases though)

def test_mutable_params_with_remove_cons(self):
m = pe.ConcreteModel()
m.x = pe.Var(bounds=(-10, 10))
m.y = pe.Var()

m.p1 = pe.Param(mutable=True)
m.p2 = pe.Param(mutable=True)

m.obj = pe.Objective(expr=m.y)
m.c1 = pe.Constraint(expr=m.y >= m.x + m.p1)
m.c2 = pe.Constraint(expr=m.y >= -m.x + m.p2)

m.p1.value = 1
m.p2.value = 1

opt = Highs()
res = opt.solve(m)
self.assertAlmostEqual(res.objective_bound, 1)

del m.c1
m.p2.value = 2
res = opt.solve(m)
self.assertAlmostEqual(res.objective_bound, -8)

def test_mutable_params_with_remove_vars(self):
m = pe.ConcreteModel()
m.x = pe.Var()
m.y = pe.Var()

m.p1 = pe.Param(mutable=True)
m.p2 = pe.Param(mutable=True)

m.y.setlb(m.p1)
m.y.setub(m.p2)

m.obj = pe.Objective(expr=m.y)
m.c1 = pe.Constraint(expr=m.y >= m.x + 1)
m.c2 = pe.Constraint(expr=m.y >= -m.x + 1)

m.p1.value = -10
m.p2.value = 10

opt = Highs()
res = opt.solve(m)
self.assertAlmostEqual(res.objective_bound, 1)

del m.c1
del m.c2
m.p1.value = -9
m.p2.value = 9
res = opt.solve(m)
self.assertAlmostEqual(res.objective_bound, -9)

def test_fix_and_unfix(self):
# Tests issue https://github.com/Pyomo/pyomo/issues/3127

m = pe.ConcreteModel()
m.x = pe.Var(domain=pe.Binary)
m.y = pe.Var(domain=pe.Binary)
m.fx = pe.Var(domain=pe.NonNegativeReals)
m.fy = pe.Var(domain=pe.NonNegativeReals)
m.c1 = pe.Constraint(expr=m.fx <= m.x)
m.c2 = pe.Constraint(expr=m.fy <= m.y)
m.c3 = pe.Constraint(expr=m.x + m.y <= 1)

m.obj = pe.Objective(expr=m.fx * 0.5 + m.fy * 0.4, sense=pe.maximize)

opt = Highs()

# solution 1 has m.x == 1 and m.y == 0
r = opt.solve(m)
self.assertAlmostEqual(m.fx.value, 1, places=5)
self.assertAlmostEqual(m.fy.value, 0, places=5)
self.assertAlmostEqual(r.objective_bound, 0.5, places=5)

# solution 2 has m.x == 0 and m.y == 1
m.y.fix(1)
r = opt.solve(m)
self.assertAlmostEqual(m.fx.value, 0, places=5)
self.assertAlmostEqual(m.fy.value, 1, places=5)
self.assertAlmostEqual(r.objective_bound, 0.4, places=5)

# solution 3 should be equal solution 1
m.y.unfix()
m.x.fix(1)
r = opt.solve(m)
self.assertAlmostEqual(m.fx.value, 1, places=5)
self.assertAlmostEqual(m.fy.value, 0, places=5)
self.assertAlmostEqual(r.objective_bound, 0.5, places=5)

def test_qp1(self):
# test issue #3381
m = pe.ConcreteModel()

m.x1 = pe.Var(name='x1', domain=pe.Reals)
m.x2 = pe.Var(name='x2', domain=pe.Reals)

# Quadratic Objective function
m.obj = pe.Objective(expr=m.x1 * m.x1 + m.x2 * m.x2, sense=pe.minimize)

m.con1 = pe.Constraint(expr=m.x1 >= 1)
m.con2 = pe.Constraint(expr=m.x2 >= 1)

results = opt.solve(m)
self.assertAlmostEqual(m.x1.value, 1, places=5)
self.assertAlmostEqual(m.x2.value, 1, places=5)
self.assertEqual(results.objective_bound, 2)

def test_qp2(self):
# test issue #3381
m = pe.ConcreteModel()

m.x1 = pe.Var(name='x1', domain=pe.Reals)
m.x2 = pe.Var(name='x2', domain=pe.Reals)

m.p = pe.Param(initialize=1, mutable=True)

m.obj = pe.Objective(
expr=m.p * m.x1 * m.x1 + m.x2 * m.x2 - m.x1 * m.x2, sense=pe.minimize
)

m.con1 = pe.Constraint(expr=m.x1 >= 1)
m.con2 = pe.Constraint(expr=m.x2 >= 1)

opt.set_instance(m)
results = opt.solve(m)
self.assertAlmostEqual(m.x1.value, 1, places=5)
self.assertAlmostEqual(m.x2.value, 1, places=5)
self.assertEqual(results.objective_bound, 1)

m.p.value = 2.0
opt.update_parameters()
results = opt.solve(m)
self.assertAlmostEqual(m.x1.value, 1, places=5)
self.assertAlmostEqual(m.x2.value, 1, places=5)
self.assertEqual(results.objective_bound, 2)
Loading