You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+10-6Lines changed: 10 additions & 6 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -13,14 +13,14 @@ This open source Python library provide several solvers for optimization problem
13
13
14
14
It provides the following solvers:
15
15
16
-
* OT solver for the linear program/ Earth Movers Distance [1].
16
+
* OT Network Flow solver for the linear program/ Earth Movers Distance [1].
17
17
* Entropic regularization OT solver with Sinkhorn Knopp Algorithm [2] and stabilized version [9][10] with optional GPU implementation (required cudamat).
18
18
* Bregman projections for Wasserstein barycenter [3] and unmixing [4].
19
19
* Optimal transport for domain adaptation with group lasso regularization [5]
20
20
* Conditional gradient [6] and Generalized conditional gradient for regularized OT [7].
21
-
* Joint OT matrix and mapping estimation [8].
21
+
*Linear OT [14] and Joint OT matrix and mapping estimation [8].
* Gromov-Wasserstein distances and barycenters [12]
23
+
* Gromov-Wasserstein distances and barycenters ([13] and regularized [12])
24
24
25
25
Some demonstrations (both in Python and Jupyter Notebook format) are available in the examples folder.
26
26
@@ -195,14 +195,18 @@ You can also post bug reports and feature requests in Github issues. Make sure t
195
195
196
196
[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). [Generalized conditional gradient: analysis of convergence and applications](https://arxiv.org/pdf/1510.06567.pdf). arXiv preprint arXiv:1510.06567.
197
197
198
-
[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, [Mapping estimation for discrete optimal transport](http://remi.flamary.com/biblio/perrot2016mapping.pdf), Neural Information Processing Systems (NIPS), 2016.
198
+
[8] M. Perrot, N. Courty, R. Flamary, A. Habrard (2016), [Mapping estimation for discrete optimal transport](http://remi.flamary.com/biblio/perrot2016mapping.pdf), Neural Information Processing Systems (NIPS).
199
199
200
200
[9] Schmitzer, B. (2016). [Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems](https://arxiv.org/pdf/1610.06519.pdf). arXiv preprint arXiv:1610.06519.
201
201
202
202
[10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). [Scaling algorithms for unbalanced transport problems](https://arxiv.org/pdf/1607.05816.pdf). arXiv preprint arXiv:1607.05816.
203
203
204
204
[11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). [Wasserstein Discriminant Analysis](https://arxiv.org/pdf/1608.08063.pdf). arXiv preprint arXiv:1608.08063.
205
205
206
-
[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon, [Gromov-Wasserstein averaging of kernel and distance matrices](http://proceedings.mlr.press/v48/peyre16.html) International Conference on Machine Learning (ICML). 2016.
206
+
[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon (2016), [Gromov-Wasserstein averaging of kernel and distance matrices](http://proceedings.mlr.press/v48/peyre16.html) International Conference on Machine Learning (ICML).
207
207
208
-
[13] Mémoli, Facundo. [Gromov–Wasserstein distances and the metric approach to object matching](https://media.adelaide.edu.au/acvt/Publications/2011/2011-Gromov%E2%80%93Wasserstein%20Distances%20and%20the%20Metric%20Approach%20to%20Object%20Matching.pdf). Foundations of computational mathematics 11.4 (2011): 417-487.
208
+
[13] Mémoli, Facundo (2011). [Gromov–Wasserstein distances and the metric approach to object matching](https://media.adelaide.edu.au/acvt/Publications/2011/2011-Gromov%E2%80%93Wasserstein%20Distances%20and%20the%20Metric%20Approach%20to%20Object%20Matching.pdf). Foundations of computational mathematics 11.4 : 417-487.
209
+
210
+
[14] Knott, M. and Smith, C. S. (1984).[On the optimal mapping of distributions](https://link.springer.com/article/10.1007/BF00934745), Journal of Optimization Theory and Applications Vol 43.
0 commit comments