@@ -19,7 +19,7 @@ def sinkhorn_unbalanced(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000,
19
19
The function solves the following optimization problem:
20
20
21
21
.. math::
22
- W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + alpha KL(\gamma 1, a) + alpha KL(\gamma^T 1, b)
22
+ W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \ a lpha KL(\gamma 1, a) + \ a lpha KL(\gamma^T 1, b)
23
23
24
24
s.t.
25
25
\gamma\geq 0
@@ -43,9 +43,9 @@ def sinkhorn_unbalanced(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000,
43
43
M : np.ndarray (ns, nt)
44
44
loss matrix
45
45
reg : float
46
- Regularization term > 0
46
+ Entropy regularization term > 0
47
47
alpha : float
48
- Regulatization term > 0
48
+ Marginal relaxation term > 0
49
49
method : str
50
50
method used for the solver either 'sinkhorn', 'sinkhorn_stabilized' or
51
51
'sinkhorn_epsilon_scaling', see those function for specific parameters
@@ -128,7 +128,7 @@ def sinkhorn_unbalanced2(a, b, M, reg, alpha, method='sinkhorn',
128
128
The function solves the following optimization problem:
129
129
130
130
.. math::
131
- W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + alpha KL(\gamma 1, a) + alpha KL(\gamma^T 1, b)
131
+ W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \ a lpha KL(\gamma 1, a) + \ a lpha KL(\gamma^T 1, b)
132
132
133
133
s.t.
134
134
\gamma\geq 0
@@ -152,9 +152,9 @@ def sinkhorn_unbalanced2(a, b, M, reg, alpha, method='sinkhorn',
152
152
M : np.ndarray (ns,nt)
153
153
loss matrix
154
154
reg : float
155
- Regularization term > 0
156
- alpha: float
157
- Regularization term > 0
155
+ Entropy regularization term > 0
156
+ alpha : float
157
+ Marginal relaxation term > 0
158
158
method : str
159
159
method used for the solver either 'sinkhorn', 'sinkhorn_stabilized' or
160
160
'sinkhorn_epsilon_scaling', see those function for specific parameters
@@ -239,7 +239,7 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000,
239
239
The function solves the following optimization problem:
240
240
241
241
.. math::
242
- W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + alpha KL(\gamma 1, a) + alpha KL(\gamma^T 1, b)
242
+ W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \ a lpha KL(\gamma 1, a) + \ a lpha KL(\gamma^T 1, b)
243
243
244
244
s.t.
245
245
\gamma\geq 0
@@ -263,9 +263,9 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000,
263
263
M : np.ndarray (ns,nt)
264
264
loss matrix
265
265
reg : float
266
- Regularization term > 0
267
- alpha: float
268
- Regularization term > 0
266
+ Entropy regularization term > 0
267
+ alpha : float
268
+ Marginal relaxation term > 0
269
269
numItermax : int, optional
270
270
Max number of iterations
271
271
stopThr : float, optional
@@ -410,7 +410,7 @@ def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000,
410
410
411
411
where :
412
412
413
- - :math:`W_ {reg}(\cdot,\cdot)` is the unbalanced entropic regularized Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced)
413
+ - :math:`Wu_ {reg}(\cdot,\cdot)` is the unbalanced entropic regularized Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced)
414
414
- :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}`
415
415
- reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT
416
416
- alpha is the marginal relaxation hyperparameter
@@ -423,9 +423,9 @@ def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000,
423
423
M : np.ndarray (d,d)
424
424
loss matrix for OT
425
425
reg : float
426
- Regularization term > 0
426
+ Entropy regularization term > 0
427
427
alpha : float
428
- Regularization term > 0
428
+ Marginal relaxation term > 0
429
429
weights : np.ndarray (n,)
430
430
Weights of each histogram a_i on the simplex (barycentric coodinates)
431
431
numItermax : int, optional
0 commit comments