-
Notifications
You must be signed in to change notification settings - Fork 528
[MRG] GW dictionary learning #319
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
rflamary
merged 26 commits into
PythonOT:master
from
cedricvincentcuaz:gw_dictionarylearning
Feb 11, 2022
Merged
Changes from all commits
Commits
Show all changes
26 commits
Select commit
Hold shift + click to select a range
bca4dd7
add fgw dictionary learning feature
cedricvincentcuaz 11f387b
add fgw dictionary learning feature
cedricvincentcuaz 41f62f0
plot gromov wasserstein dictionary learning
cedricvincentcuaz 3845cbd
Update __init__.py
cedricvincentcuaz 5a17a0d
Merge branch 'master' into gw_dictionarylearning
rflamary 819ee22
Merge branch 'master' into gw_dictionarylearning
rflamary 8b79a42
fix pep8 errors exact E501 line too long
cedricvincentcuaz c7cb2f8
override my changes to init
cedricvincentcuaz 6f69561
fix last pep8 issues
cedricvincentcuaz 38cff36
Merge branch 'master' into gw_dictionarylearning
rflamary 0cd178d
Merge branch 'master' into gw_dictionarylearning
rflamary d531dae
add unitary tests for (F)GW dictionary learning without using autodif…
cedricvincentcuaz 003ffdd
Merge branch 'master' into gw_dictionarylearning
rflamary 3224814
correct tests for (F)GW dictionary learning without using autodiff
cedricvincentcuaz 0c6adc9
Merge branch 'gw_dictionarylearning' of https://github.com/cedricvinc…
cedricvincentcuaz 83f1f46
correct tests for (F)GW dictionary learning without using autodiff
cedricvincentcuaz 44fd22b
fix docs and notations
cedricvincentcuaz 0f981a2
Merge branch 'master' into gw_dictionarylearning
rflamary 2550631
answer to review: improve tests, docs, examples + make node weights o…
cedricvincentcuaz 06146d7
Merge branch 'gw_dictionarylearning' of https://github.com/cedricvinc…
cedricvincentcuaz 45b7667
fix pep8 and examples
cedricvincentcuaz 0610ee3
improve docs + tests + thumbnail
cedricvincentcuaz afd4d4e
make example faster
cedricvincentcuaz 9db794b
improve ex
cedricvincentcuaz 278a1aa
update README.md
cedricvincentcuaz aecd04a
make GDL tests faster
cedricvincentcuaz File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
357 changes: 357 additions & 0 deletions
357
examples/gromov/plot_gromov_wasserstein_dictionary_learning.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,357 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
r""" | ||
================================= | ||
(Fused) Gromov-Wasserstein Linear Dictionary Learning | ||
================================= | ||
|
||
In this exemple, we illustrate how to learn a Gromov-Wasserstein dictionary on | ||
a dataset of structured data such as graphs, denoted | ||
:math:`\{ \mathbf{C_s} \}_{s \in [S]}` where every nodes have uniform weights. | ||
Given a dictionary :math:`\mathbf{C_{dict}}` composed of D structures of a fixed | ||
size nt, each graph :math:`(\mathbf{C_s}, \mathbf{p_s})` | ||
is modeled as a convex combination :math:`\mathbf{w_s} \in \Sigma_D` of these | ||
dictionary atoms as :math:`\sum_d w_{s,d} \mathbf{C_{dict}[d]}`. | ||
|
||
|
||
First, we consider a dataset composed of graphs generated by Stochastic Block models | ||
with variable sizes taken in :math:`\{30, ... , 50\}` and quantities of clusters | ||
varying in :math:`\{ 1, 2, 3\}`. We learn a dictionary of 3 atoms, by minimizing | ||
the Gromov-Wasserstein distance from all samples to its model in the dictionary | ||
with respect to the dictionary atoms. | ||
|
||
Second, we illustrate the extension of this dictionary learning framework to | ||
structured data endowed with node features by using the Fused Gromov-Wasserstein | ||
distance. Starting from the aforementioned dataset of unattributed graphs, we | ||
add discrete labels uniformly depending on the number of clusters. Then we learn | ||
and visualize attributed graph atoms where each sample is modeled as a joint convex | ||
combination between atom structures and features. | ||
|
||
|
||
[38] C. Vincent-Cuaz, T. Vayer, R. Flamary, M. Corneli, N. Courty, Online Graph | ||
Dictionary Learning, International Conference on Machine Learning (ICML), 2021. | ||
|
||
""" | ||
# Author: Cédric Vincent-Cuaz <cedric.vincent-cuaz@inria.fr> | ||
# | ||
# License: MIT License | ||
|
||
# sphinx_gallery_thumbnail_number = 4 | ||
|
||
import numpy as np | ||
import matplotlib.pylab as pl | ||
from sklearn.manifold import MDS | ||
from ot.gromov import gromov_wasserstein_linear_unmixing, gromov_wasserstein_dictionary_learning, fused_gromov_wasserstein_linear_unmixing, fused_gromov_wasserstein_dictionary_learning | ||
import ot | ||
import networkx | ||
from networkx.generators.community import stochastic_block_model as sbm | ||
# %% | ||
# ============================================================================= | ||
# Generate a dataset composed of graphs following Stochastic Block models of 1, 2 and 3 clusters. | ||
# ============================================================================= | ||
|
||
np.random.seed(42) | ||
|
||
N = 60 # number of graphs in the dataset | ||
# For every number of clusters, we generate SBM with fixed inter/intra-clusters probability. | ||
clusters = [1, 2, 3] | ||
Nc = N // len(clusters) # number of graphs by cluster | ||
nlabels = len(clusters) | ||
dataset = [] | ||
labels = [] | ||
|
||
p_inter = 0.1 | ||
p_intra = 0.9 | ||
for n_cluster in clusters: | ||
for i in range(Nc): | ||
n_nodes = int(np.random.uniform(low=30, high=50)) | ||
|
||
if n_cluster > 1: | ||
P = p_inter * np.ones((n_cluster, n_cluster)) | ||
np.fill_diagonal(P, p_intra) | ||
else: | ||
P = p_intra * np.eye(1) | ||
sizes = np.round(n_nodes * np.ones(n_cluster) / n_cluster).astype(np.int32) | ||
G = sbm(sizes, P, seed=i, directed=False) | ||
C = networkx.to_numpy_array(G) | ||
dataset.append(C) | ||
labels.append(n_cluster) | ||
|
||
|
||
# Visualize samples | ||
|
||
def plot_graph(x, C, binary=True, color='C0', s=None): | ||
for j in range(C.shape[0]): | ||
for i in range(j): | ||
if binary: | ||
if C[i, j] > 0: | ||
pl.plot([x[i, 0], x[j, 0]], [x[i, 1], x[j, 1]], alpha=0.2, color='k') | ||
else: # connection intensity proportional to C[i,j] | ||
pl.plot([x[i, 0], x[j, 0]], [x[i, 1], x[j, 1]], alpha=C[i, j], color='k') | ||
|
||
pl.scatter(x[:, 0], x[:, 1], c=color, s=s, zorder=10, edgecolors='k', cmap='tab10', vmax=9) | ||
|
||
|
||
pl.figure(1, (12, 8)) | ||
pl.clf() | ||
for idx_c, c in enumerate(clusters): | ||
C = dataset[(c - 1) * Nc] # sample with c clusters | ||
# get 2d position for nodes | ||
x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - C) | ||
pl.subplot(2, nlabels, c) | ||
pl.title('(graph) sample from label ' + str(c), fontsize=14) | ||
plot_graph(x, C, binary=True, color='C0', s=50.) | ||
pl.axis("off") | ||
pl.subplot(2, nlabels, nlabels + c) | ||
pl.title('(matrix) sample from label %s \n' % c, fontsize=14) | ||
pl.imshow(C, interpolation='nearest') | ||
pl.axis("off") | ||
pl.tight_layout() | ||
pl.show() | ||
|
||
# %% | ||
# ============================================================================= | ||
# Estimate the gromov-wasserstein dictionary from the dataset | ||
# ============================================================================= | ||
|
||
|
||
np.random.seed(0) | ||
ps = [ot.unif(C.shape[0]) for C in dataset] | ||
|
||
D = 3 # 3 atoms in the dictionary | ||
nt = 6 # of 6 nodes each | ||
|
||
q = ot.unif(nt) | ||
reg = 0. # regularization coefficient to promote sparsity of unmixings {w_s} | ||
|
||
Cdict_GW, log = gromov_wasserstein_dictionary_learning( | ||
Cs=dataset, D=D, nt=nt, ps=ps, q=q, epochs=10, batch_size=16, | ||
learning_rate=0.1, reg=reg, projection='nonnegative_symmetric', | ||
tol_outer=10**(-5), tol_inner=10**(-5), max_iter_outer=30, max_iter_inner=300, | ||
use_log=True, use_adam_optimizer=True, verbose=True | ||
) | ||
# visualize loss evolution over epochs | ||
pl.figure(2, (4, 3)) | ||
pl.clf() | ||
pl.title('loss evolution by epoch', fontsize=14) | ||
pl.plot(log['loss_epochs']) | ||
pl.xlabel('epochs', fontsize=12) | ||
pl.ylabel('loss', fontsize=12) | ||
pl.tight_layout() | ||
pl.show() | ||
|
||
# %% | ||
# ============================================================================= | ||
# Visualization of the estimated dictionary atoms | ||
# ============================================================================= | ||
|
||
|
||
# Continuous connections between nodes of the atoms are colored in shades of grey (1: dark / 2: white) | ||
|
||
pl.figure(3, (12, 8)) | ||
pl.clf() | ||
for idx_atom, atom in enumerate(Cdict_GW): | ||
scaled_atom = (atom - atom.min()) / (atom.max() - atom.min()) | ||
x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - scaled_atom) | ||
pl.subplot(2, D, idx_atom + 1) | ||
pl.title('(graph) atom ' + str(idx_atom + 1), fontsize=14) | ||
plot_graph(x, atom / atom.max(), binary=False, color='C0', s=100.) | ||
pl.axis("off") | ||
pl.subplot(2, D, D + idx_atom + 1) | ||
pl.title('(matrix) atom %s \n' % (idx_atom + 1), fontsize=14) | ||
pl.imshow(scaled_atom, interpolation='nearest') | ||
pl.colorbar() | ||
pl.axis("off") | ||
pl.tight_layout() | ||
pl.show() | ||
#%% | ||
# ============================================================================= | ||
# Visualization of the embedding space | ||
# ============================================================================= | ||
|
||
unmixings = [] | ||
reconstruction_errors = [] | ||
for C in dataset: | ||
p = ot.unif(C.shape[0]) | ||
unmixing, Cembedded, OT, reconstruction_error = gromov_wasserstein_linear_unmixing( | ||
C, Cdict_GW, p=p, q=q, reg=reg, | ||
tol_outer=10**(-5), tol_inner=10**(-5), | ||
max_iter_outer=30, max_iter_inner=300 | ||
) | ||
unmixings.append(unmixing) | ||
reconstruction_errors.append(reconstruction_error) | ||
unmixings = np.array(unmixings) | ||
print('cumulated reconstruction error:', np.array(reconstruction_errors).sum()) | ||
|
||
|
||
# Compute the 2D representation of the unmixing living in the 2-simplex of probability | ||
unmixings2D = np.zeros(shape=(N, 2)) | ||
for i, w in enumerate(unmixings): | ||
unmixings2D[i, 0] = (2. * w[1] + w[2]) / 2. | ||
unmixings2D[i, 1] = (np.sqrt(3.) * w[2]) / 2. | ||
x = [0., 0.] | ||
y = [1., 0.] | ||
z = [0.5, np.sqrt(3) / 2.] | ||
extremities = np.stack([x, y, z]) | ||
|
||
pl.figure(4, (4, 4)) | ||
pl.clf() | ||
pl.title('Embedding space', fontsize=14) | ||
for cluster in range(nlabels): | ||
start, end = Nc * cluster, Nc * (cluster + 1) | ||
if cluster == 0: | ||
pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='1 cluster') | ||
else: | ||
pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='%s clusters' % (cluster + 1)) | ||
pl.scatter(extremities[:, 0], extremities[:, 1], c='black', marker='x', s=80., label='atoms') | ||
pl.plot([x[0], y[0]], [x[1], y[1]], color='black', linewidth=2.) | ||
pl.plot([x[0], z[0]], [x[1], z[1]], color='black', linewidth=2.) | ||
pl.plot([y[0], z[0]], [y[1], z[1]], color='black', linewidth=2.) | ||
pl.axis('off') | ||
pl.legend(fontsize=11) | ||
pl.tight_layout() | ||
pl.show() | ||
# %% | ||
# ============================================================================= | ||
# Endow the dataset with node features | ||
# ============================================================================= | ||
|
||
# We follow this feature assignment on all nodes of a graph depending on its label/number of clusters | ||
# 1 cluster --> 0 as nodes feature | ||
# 2 clusters --> 1 as nodes feature | ||
# 3 clusters --> 2 as nodes feature | ||
# features are one-hot encoded following these assignments | ||
dataset_features = [] | ||
for i in range(len(dataset)): | ||
n = dataset[i].shape[0] | ||
F = np.zeros((n, 3)) | ||
if i < Nc: # graph with 1 cluster | ||
F[:, 0] = 1. | ||
elif i < 2 * Nc: # graph with 2 clusters | ||
F[:, 1] = 1. | ||
else: # graph with 3 clusters | ||
F[:, 2] = 1. | ||
dataset_features.append(F) | ||
|
||
pl.figure(5, (12, 8)) | ||
pl.clf() | ||
for idx_c, c in enumerate(clusters): | ||
C = dataset[(c - 1) * Nc] # sample with c clusters | ||
F = dataset_features[(c - 1) * Nc] | ||
colors = ['C' + str(np.argmax(F[i])) for i in range(F.shape[0])] | ||
# get 2d position for nodes | ||
x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - C) | ||
pl.subplot(2, nlabels, c) | ||
pl.title('(graph) sample from label ' + str(c), fontsize=14) | ||
plot_graph(x, C, binary=True, color=colors, s=50) | ||
pl.axis("off") | ||
pl.subplot(2, nlabels, nlabels + c) | ||
pl.title('(matrix) sample from label %s \n' % c, fontsize=14) | ||
pl.imshow(C, interpolation='nearest') | ||
pl.axis("off") | ||
pl.tight_layout() | ||
pl.show() | ||
# %% | ||
# ============================================================================= | ||
# Estimate a Fused Gromov-Wasserstein dictionary from the dataset of attributed graphs | ||
# ============================================================================= | ||
np.random.seed(0) | ||
ps = [ot.unif(C.shape[0]) for C in dataset] | ||
D = 3 # 6 atoms instead of 3 | ||
nt = 6 | ||
q = ot.unif(nt) | ||
reg = 0.001 | ||
alpha = 0.5 # trade-off parameter between structure and feature information of Fused Gromov-Wasserstein | ||
|
||
|
||
Cdict_FGW, Ydict_FGW, log = fused_gromov_wasserstein_dictionary_learning( | ||
Cs=dataset, Ys=dataset_features, D=D, nt=nt, ps=ps, q=q, alpha=alpha, | ||
epochs=10, batch_size=16, learning_rate_C=0.1, learning_rate_Y=0.1, reg=reg, | ||
tol_outer=10**(-5), tol_inner=10**(-5), max_iter_outer=30, max_iter_inner=300, | ||
projection='nonnegative_symmetric', use_log=True, use_adam_optimizer=True, verbose=True | ||
) | ||
# visualize loss evolution | ||
pl.figure(6, (4, 3)) | ||
pl.clf() | ||
pl.title('loss evolution by epoch', fontsize=14) | ||
pl.plot(log['loss_epochs']) | ||
pl.xlabel('epochs', fontsize=12) | ||
pl.ylabel('loss', fontsize=12) | ||
pl.tight_layout() | ||
pl.show() | ||
|
||
# %% | ||
# ============================================================================= | ||
# Visualization of the estimated dictionary atoms | ||
# ============================================================================= | ||
|
||
pl.figure(7, (12, 8)) | ||
pl.clf() | ||
max_features = Ydict_FGW.max() | ||
min_features = Ydict_FGW.min() | ||
|
||
for idx_atom, (Catom, Fatom) in enumerate(zip(Cdict_FGW, Ydict_FGW)): | ||
scaled_atom = (Catom - Catom.min()) / (Catom.max() - Catom.min()) | ||
#scaled_F = 2 * (Fatom - min_features) / (max_features - min_features) | ||
colors = ['C%s' % np.argmax(Fatom[i]) for i in range(Fatom.shape[0])] | ||
x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - scaled_atom) | ||
pl.subplot(2, D, idx_atom + 1) | ||
pl.title('(attributed graph) atom ' + str(idx_atom + 1), fontsize=14) | ||
plot_graph(x, Catom / Catom.max(), binary=False, color=colors, s=100) | ||
pl.axis("off") | ||
pl.subplot(2, D, D + idx_atom + 1) | ||
pl.title('(matrix) atom %s \n' % (idx_atom + 1), fontsize=14) | ||
pl.imshow(scaled_atom, interpolation='nearest') | ||
pl.colorbar() | ||
pl.axis("off") | ||
pl.tight_layout() | ||
pl.show() | ||
|
||
# %% | ||
# ============================================================================= | ||
# Visualization of the embedding space | ||
# ============================================================================= | ||
|
||
unmixings = [] | ||
reconstruction_errors = [] | ||
for i in range(len(dataset)): | ||
C = dataset[i] | ||
Y = dataset_features[i] | ||
p = ot.unif(C.shape[0]) | ||
unmixing, Cembedded, Yembedded, OT, reconstruction_error = fused_gromov_wasserstein_linear_unmixing( | ||
C, Y, Cdict_FGW, Ydict_FGW, p=p, q=q, alpha=alpha, | ||
reg=reg, tol_outer=10**(-6), tol_inner=10**(-6), max_iter_outer=30, max_iter_inner=300 | ||
) | ||
unmixings.append(unmixing) | ||
reconstruction_errors.append(reconstruction_error) | ||
unmixings = np.array(unmixings) | ||
print('cumulated reconstruction error:', np.array(reconstruction_errors).sum()) | ||
|
||
# Visualize unmixings in the 2-simplex of probability | ||
unmixings2D = np.zeros(shape=(N, 2)) | ||
for i, w in enumerate(unmixings): | ||
unmixings2D[i, 0] = (2. * w[1] + w[2]) / 2. | ||
unmixings2D[i, 1] = (np.sqrt(3.) * w[2]) / 2. | ||
x = [0., 0.] | ||
y = [1., 0.] | ||
z = [0.5, np.sqrt(3) / 2.] | ||
extremities = np.stack([x, y, z]) | ||
|
||
pl.figure(8, (4, 4)) | ||
pl.clf() | ||
pl.title('Embedding space', fontsize=14) | ||
for cluster in range(nlabels): | ||
start, end = Nc * cluster, Nc * (cluster + 1) | ||
if cluster == 0: | ||
pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='1 cluster') | ||
else: | ||
pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='%s clusters' % (cluster + 1)) | ||
|
||
pl.scatter(extremities[:, 0], extremities[:, 1], c='black', marker='x', s=80., label='atoms') | ||
pl.plot([x[0], y[0]], [x[1], y[1]], color='black', linewidth=2.) | ||
pl.plot([x[0], z[0]], [x[1], z[1]], color='black', linewidth=2.) | ||
pl.plot([y[0], z[0]], [y[1], z[1]], color='black', linewidth=2.) | ||
pl.axis('off') | ||
pl.legend(fontsize=11) | ||
pl.tight_layout() | ||
pl.show() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.