Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
26 commits
Select commit Hold shift + click to select a range
bca4dd7
add fgw dictionary learning feature
cedricvincentcuaz Dec 7, 2021
11f387b
add fgw dictionary learning feature
cedricvincentcuaz Dec 7, 2021
41f62f0
plot gromov wasserstein dictionary learning
cedricvincentcuaz Dec 8, 2021
3845cbd
Update __init__.py
cedricvincentcuaz Dec 8, 2021
5a17a0d
Merge branch 'master' into gw_dictionarylearning
rflamary Dec 9, 2021
819ee22
Merge branch 'master' into gw_dictionarylearning
rflamary Dec 9, 2021
8b79a42
fix pep8 errors exact E501 line too long
cedricvincentcuaz Dec 9, 2021
c7cb2f8
override my changes to init
cedricvincentcuaz Dec 9, 2021
6f69561
fix last pep8 issues
cedricvincentcuaz Dec 13, 2021
38cff36
Merge branch 'master' into gw_dictionarylearning
rflamary Dec 17, 2021
0cd178d
Merge branch 'master' into gw_dictionarylearning
rflamary Jan 21, 2022
d531dae
add unitary tests for (F)GW dictionary learning without using autodif…
cedricvincentcuaz Jan 31, 2022
003ffdd
Merge branch 'master' into gw_dictionarylearning
rflamary Feb 1, 2022
3224814
correct tests for (F)GW dictionary learning without using autodiff
cedricvincentcuaz Feb 1, 2022
0c6adc9
Merge branch 'gw_dictionarylearning' of https://github.com/cedricvinc…
cedricvincentcuaz Feb 1, 2022
83f1f46
correct tests for (F)GW dictionary learning without using autodiff
cedricvincentcuaz Feb 1, 2022
44fd22b
fix docs and notations
cedricvincentcuaz Feb 3, 2022
0f981a2
Merge branch 'master' into gw_dictionarylearning
rflamary Feb 3, 2022
2550631
answer to review: improve tests, docs, examples + make node weights o…
cedricvincentcuaz Feb 4, 2022
06146d7
Merge branch 'gw_dictionarylearning' of https://github.com/cedricvinc…
cedricvincentcuaz Feb 4, 2022
45b7667
fix pep8 and examples
cedricvincentcuaz Feb 4, 2022
0610ee3
improve docs + tests + thumbnail
cedricvincentcuaz Feb 10, 2022
afd4d4e
make example faster
cedricvincentcuaz Feb 10, 2022
9db794b
improve ex
cedricvincentcuaz Feb 10, 2022
278a1aa
update README.md
cedricvincentcuaz Feb 11, 2022
aecd04a
make GDL tests faster
cedricvincentcuaz Feb 11, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ POT provides the following generic OT solvers (links to examples):
* [Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) (exact [29] and entropic [3]
formulations).
* [Sliced Wasserstein](https://pythonot.github.io/auto_examples/sliced-wasserstein/plot_variance.html) [31, 32] and Max-sliced Wasserstein [35] that can be used for gradient flows [36].
* [Graph Dictionary Learning solvers](https://pythonot.github.io/auto_examples/gromov/plot_gromov_wasserstein_dictionary_learning.html) [38].
* [Several backends](https://pythonot.github.io/quickstart.html#solving-ot-with-multiple-backends) for easy use of POT with [Pytorch](https://pytorch.org/)/[jax](https://github.com/google/jax)/[Numpy](https://numpy.org/)/[Cupy](https://cupy.dev/)/[Tensorflow](https://www.tensorflow.org/) arrays.

POT provides the following Machine Learning related solvers:
Expand Down Expand Up @@ -198,6 +199,7 @@ The contributors to this library are
* [Tanguy Kerdoncuff](https://hv0nnus.github.io/) (Sampled Gromov Wasserstein)
* [Minhui Huang](https://mhhuang95.github.io) (Projection Robust Wasserstein Distance)
* [Nathan Cassereau](https://github.com/ncassereau-idris) (Backends)
* [Cédric Vincent-Cuaz](https://github.com/cedricvincentcuaz) (Graph Dictionary Learning)

This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code (in various languages):

Expand Down
2 changes: 1 addition & 1 deletion RELEASES.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
of the regularization parameter (PR #336).
- Backend implementation for `ot.lp.free_support_barycenter` (PR #340).
- Add weak OT solver + example (PR #341).

- Add (F)GW linear dictionary learning solvers + example (PR #319)

#### Closed issues

Expand Down
357 changes: 357 additions & 0 deletions examples/gromov/plot_gromov_wasserstein_dictionary_learning.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,357 @@
# -*- coding: utf-8 -*-

r"""
=================================
(Fused) Gromov-Wasserstein Linear Dictionary Learning
=================================

In this exemple, we illustrate how to learn a Gromov-Wasserstein dictionary on
a dataset of structured data such as graphs, denoted
:math:`\{ \mathbf{C_s} \}_{s \in [S]}` where every nodes have uniform weights.
Given a dictionary :math:`\mathbf{C_{dict}}` composed of D structures of a fixed
size nt, each graph :math:`(\mathbf{C_s}, \mathbf{p_s})`
is modeled as a convex combination :math:`\mathbf{w_s} \in \Sigma_D` of these
dictionary atoms as :math:`\sum_d w_{s,d} \mathbf{C_{dict}[d]}`.


First, we consider a dataset composed of graphs generated by Stochastic Block models
with variable sizes taken in :math:`\{30, ... , 50\}` and quantities of clusters
varying in :math:`\{ 1, 2, 3\}`. We learn a dictionary of 3 atoms, by minimizing
the Gromov-Wasserstein distance from all samples to its model in the dictionary
with respect to the dictionary atoms.

Second, we illustrate the extension of this dictionary learning framework to
structured data endowed with node features by using the Fused Gromov-Wasserstein
distance. Starting from the aforementioned dataset of unattributed graphs, we
add discrete labels uniformly depending on the number of clusters. Then we learn
and visualize attributed graph atoms where each sample is modeled as a joint convex
combination between atom structures and features.


[38] C. Vincent-Cuaz, T. Vayer, R. Flamary, M. Corneli, N. Courty, Online Graph
Dictionary Learning, International Conference on Machine Learning (ICML), 2021.

"""
# Author: Cédric Vincent-Cuaz <cedric.vincent-cuaz@inria.fr>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 4

import numpy as np
import matplotlib.pylab as pl
from sklearn.manifold import MDS
from ot.gromov import gromov_wasserstein_linear_unmixing, gromov_wasserstein_dictionary_learning, fused_gromov_wasserstein_linear_unmixing, fused_gromov_wasserstein_dictionary_learning
import ot
import networkx
from networkx.generators.community import stochastic_block_model as sbm
# %%
# =============================================================================
# Generate a dataset composed of graphs following Stochastic Block models of 1, 2 and 3 clusters.
# =============================================================================

np.random.seed(42)

N = 60 # number of graphs in the dataset
# For every number of clusters, we generate SBM with fixed inter/intra-clusters probability.
clusters = [1, 2, 3]
Nc = N // len(clusters) # number of graphs by cluster
nlabels = len(clusters)
dataset = []
labels = []

p_inter = 0.1
p_intra = 0.9
for n_cluster in clusters:
for i in range(Nc):
n_nodes = int(np.random.uniform(low=30, high=50))

if n_cluster > 1:
P = p_inter * np.ones((n_cluster, n_cluster))
np.fill_diagonal(P, p_intra)
else:
P = p_intra * np.eye(1)
sizes = np.round(n_nodes * np.ones(n_cluster) / n_cluster).astype(np.int32)
G = sbm(sizes, P, seed=i, directed=False)
C = networkx.to_numpy_array(G)
dataset.append(C)
labels.append(n_cluster)


# Visualize samples

def plot_graph(x, C, binary=True, color='C0', s=None):
for j in range(C.shape[0]):
for i in range(j):
if binary:
if C[i, j] > 0:
pl.plot([x[i, 0], x[j, 0]], [x[i, 1], x[j, 1]], alpha=0.2, color='k')
else: # connection intensity proportional to C[i,j]
pl.plot([x[i, 0], x[j, 0]], [x[i, 1], x[j, 1]], alpha=C[i, j], color='k')

pl.scatter(x[:, 0], x[:, 1], c=color, s=s, zorder=10, edgecolors='k', cmap='tab10', vmax=9)


pl.figure(1, (12, 8))
pl.clf()
for idx_c, c in enumerate(clusters):
C = dataset[(c - 1) * Nc] # sample with c clusters
# get 2d position for nodes
x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - C)
pl.subplot(2, nlabels, c)
pl.title('(graph) sample from label ' + str(c), fontsize=14)
plot_graph(x, C, binary=True, color='C0', s=50.)
pl.axis("off")
pl.subplot(2, nlabels, nlabels + c)
pl.title('(matrix) sample from label %s \n' % c, fontsize=14)
pl.imshow(C, interpolation='nearest')
pl.axis("off")
pl.tight_layout()
pl.show()

# %%
# =============================================================================
# Estimate the gromov-wasserstein dictionary from the dataset
# =============================================================================


np.random.seed(0)
ps = [ot.unif(C.shape[0]) for C in dataset]

D = 3 # 3 atoms in the dictionary
nt = 6 # of 6 nodes each

q = ot.unif(nt)
reg = 0. # regularization coefficient to promote sparsity of unmixings {w_s}

Cdict_GW, log = gromov_wasserstein_dictionary_learning(
Cs=dataset, D=D, nt=nt, ps=ps, q=q, epochs=10, batch_size=16,
learning_rate=0.1, reg=reg, projection='nonnegative_symmetric',
tol_outer=10**(-5), tol_inner=10**(-5), max_iter_outer=30, max_iter_inner=300,
use_log=True, use_adam_optimizer=True, verbose=True
)
# visualize loss evolution over epochs
pl.figure(2, (4, 3))
pl.clf()
pl.title('loss evolution by epoch', fontsize=14)
pl.plot(log['loss_epochs'])
pl.xlabel('epochs', fontsize=12)
pl.ylabel('loss', fontsize=12)
pl.tight_layout()
pl.show()

# %%
# =============================================================================
# Visualization of the estimated dictionary atoms
# =============================================================================


# Continuous connections between nodes of the atoms are colored in shades of grey (1: dark / 2: white)

pl.figure(3, (12, 8))
pl.clf()
for idx_atom, atom in enumerate(Cdict_GW):
scaled_atom = (atom - atom.min()) / (atom.max() - atom.min())
x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - scaled_atom)
pl.subplot(2, D, idx_atom + 1)
pl.title('(graph) atom ' + str(idx_atom + 1), fontsize=14)
plot_graph(x, atom / atom.max(), binary=False, color='C0', s=100.)
pl.axis("off")
pl.subplot(2, D, D + idx_atom + 1)
pl.title('(matrix) atom %s \n' % (idx_atom + 1), fontsize=14)
pl.imshow(scaled_atom, interpolation='nearest')
pl.colorbar()
pl.axis("off")
pl.tight_layout()
pl.show()
#%%
# =============================================================================
# Visualization of the embedding space
# =============================================================================

unmixings = []
reconstruction_errors = []
for C in dataset:
p = ot.unif(C.shape[0])
unmixing, Cembedded, OT, reconstruction_error = gromov_wasserstein_linear_unmixing(
C, Cdict_GW, p=p, q=q, reg=reg,
tol_outer=10**(-5), tol_inner=10**(-5),
max_iter_outer=30, max_iter_inner=300
)
unmixings.append(unmixing)
reconstruction_errors.append(reconstruction_error)
unmixings = np.array(unmixings)
print('cumulated reconstruction error:', np.array(reconstruction_errors).sum())


# Compute the 2D representation of the unmixing living in the 2-simplex of probability
unmixings2D = np.zeros(shape=(N, 2))
for i, w in enumerate(unmixings):
unmixings2D[i, 0] = (2. * w[1] + w[2]) / 2.
unmixings2D[i, 1] = (np.sqrt(3.) * w[2]) / 2.
x = [0., 0.]
y = [1., 0.]
z = [0.5, np.sqrt(3) / 2.]
extremities = np.stack([x, y, z])

pl.figure(4, (4, 4))
pl.clf()
pl.title('Embedding space', fontsize=14)
for cluster in range(nlabels):
start, end = Nc * cluster, Nc * (cluster + 1)
if cluster == 0:
pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='1 cluster')
else:
pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='%s clusters' % (cluster + 1))
pl.scatter(extremities[:, 0], extremities[:, 1], c='black', marker='x', s=80., label='atoms')
pl.plot([x[0], y[0]], [x[1], y[1]], color='black', linewidth=2.)
pl.plot([x[0], z[0]], [x[1], z[1]], color='black', linewidth=2.)
pl.plot([y[0], z[0]], [y[1], z[1]], color='black', linewidth=2.)
pl.axis('off')
pl.legend(fontsize=11)
pl.tight_layout()
pl.show()
# %%
# =============================================================================
# Endow the dataset with node features
# =============================================================================

# We follow this feature assignment on all nodes of a graph depending on its label/number of clusters
# 1 cluster --> 0 as nodes feature
# 2 clusters --> 1 as nodes feature
# 3 clusters --> 2 as nodes feature
# features are one-hot encoded following these assignments
dataset_features = []
for i in range(len(dataset)):
n = dataset[i].shape[0]
F = np.zeros((n, 3))
if i < Nc: # graph with 1 cluster
F[:, 0] = 1.
elif i < 2 * Nc: # graph with 2 clusters
F[:, 1] = 1.
else: # graph with 3 clusters
F[:, 2] = 1.
dataset_features.append(F)

pl.figure(5, (12, 8))
pl.clf()
for idx_c, c in enumerate(clusters):
C = dataset[(c - 1) * Nc] # sample with c clusters
F = dataset_features[(c - 1) * Nc]
colors = ['C' + str(np.argmax(F[i])) for i in range(F.shape[0])]
# get 2d position for nodes
x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - C)
pl.subplot(2, nlabels, c)
pl.title('(graph) sample from label ' + str(c), fontsize=14)
plot_graph(x, C, binary=True, color=colors, s=50)
pl.axis("off")
pl.subplot(2, nlabels, nlabels + c)
pl.title('(matrix) sample from label %s \n' % c, fontsize=14)
pl.imshow(C, interpolation='nearest')
pl.axis("off")
pl.tight_layout()
pl.show()
# %%
# =============================================================================
# Estimate a Fused Gromov-Wasserstein dictionary from the dataset of attributed graphs
# =============================================================================
np.random.seed(0)
ps = [ot.unif(C.shape[0]) for C in dataset]
D = 3 # 6 atoms instead of 3
nt = 6
q = ot.unif(nt)
reg = 0.001
alpha = 0.5 # trade-off parameter between structure and feature information of Fused Gromov-Wasserstein


Cdict_FGW, Ydict_FGW, log = fused_gromov_wasserstein_dictionary_learning(
Cs=dataset, Ys=dataset_features, D=D, nt=nt, ps=ps, q=q, alpha=alpha,
epochs=10, batch_size=16, learning_rate_C=0.1, learning_rate_Y=0.1, reg=reg,
tol_outer=10**(-5), tol_inner=10**(-5), max_iter_outer=30, max_iter_inner=300,
projection='nonnegative_symmetric', use_log=True, use_adam_optimizer=True, verbose=True
)
# visualize loss evolution
pl.figure(6, (4, 3))
pl.clf()
pl.title('loss evolution by epoch', fontsize=14)
pl.plot(log['loss_epochs'])
pl.xlabel('epochs', fontsize=12)
pl.ylabel('loss', fontsize=12)
pl.tight_layout()
pl.show()

# %%
# =============================================================================
# Visualization of the estimated dictionary atoms
# =============================================================================

pl.figure(7, (12, 8))
pl.clf()
max_features = Ydict_FGW.max()
min_features = Ydict_FGW.min()

for idx_atom, (Catom, Fatom) in enumerate(zip(Cdict_FGW, Ydict_FGW)):
scaled_atom = (Catom - Catom.min()) / (Catom.max() - Catom.min())
#scaled_F = 2 * (Fatom - min_features) / (max_features - min_features)
colors = ['C%s' % np.argmax(Fatom[i]) for i in range(Fatom.shape[0])]
x = MDS(dissimilarity='precomputed', random_state=0).fit_transform(1 - scaled_atom)
pl.subplot(2, D, idx_atom + 1)
pl.title('(attributed graph) atom ' + str(idx_atom + 1), fontsize=14)
plot_graph(x, Catom / Catom.max(), binary=False, color=colors, s=100)
pl.axis("off")
pl.subplot(2, D, D + idx_atom + 1)
pl.title('(matrix) atom %s \n' % (idx_atom + 1), fontsize=14)
pl.imshow(scaled_atom, interpolation='nearest')
pl.colorbar()
pl.axis("off")
pl.tight_layout()
pl.show()

# %%
# =============================================================================
# Visualization of the embedding space
# =============================================================================

unmixings = []
reconstruction_errors = []
for i in range(len(dataset)):
C = dataset[i]
Y = dataset_features[i]
p = ot.unif(C.shape[0])
unmixing, Cembedded, Yembedded, OT, reconstruction_error = fused_gromov_wasserstein_linear_unmixing(
C, Y, Cdict_FGW, Ydict_FGW, p=p, q=q, alpha=alpha,
reg=reg, tol_outer=10**(-6), tol_inner=10**(-6), max_iter_outer=30, max_iter_inner=300
)
unmixings.append(unmixing)
reconstruction_errors.append(reconstruction_error)
unmixings = np.array(unmixings)
print('cumulated reconstruction error:', np.array(reconstruction_errors).sum())

# Visualize unmixings in the 2-simplex of probability
unmixings2D = np.zeros(shape=(N, 2))
for i, w in enumerate(unmixings):
unmixings2D[i, 0] = (2. * w[1] + w[2]) / 2.
unmixings2D[i, 1] = (np.sqrt(3.) * w[2]) / 2.
x = [0., 0.]
y = [1., 0.]
z = [0.5, np.sqrt(3) / 2.]
extremities = np.stack([x, y, z])

pl.figure(8, (4, 4))
pl.clf()
pl.title('Embedding space', fontsize=14)
for cluster in range(nlabels):
start, end = Nc * cluster, Nc * (cluster + 1)
if cluster == 0:
pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='1 cluster')
else:
pl.scatter(unmixings2D[start:end, 0], unmixings2D[start:end, 1], c='C' + str(cluster), marker='o', s=40., label='%s clusters' % (cluster + 1))

pl.scatter(extremities[:, 0], extremities[:, 1], c='black', marker='x', s=80., label='atoms')
pl.plot([x[0], y[0]], [x[1], y[1]], color='black', linewidth=2.)
pl.plot([x[0], z[0]], [x[1], z[1]], color='black', linewidth=2.)
pl.plot([y[0], z[0]], [y[1], z[1]], color='black', linewidth=2.)
pl.axis('off')
pl.legend(fontsize=11)
pl.tight_layout()
pl.show()
Loading