Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/cache_nbrun
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"plot_otda_mapping_colors_images.ipynb": "4f0587a00a3c082799a75a0ed36e9ce1", "plot_optim_OTreg.ipynb": "481801bb0d133ef350a65179cf8f739a", "plot_barycenter_1D.ipynb": "5f6fb8aebd8e2e91ebc77c923cb112b3", "plot_stochastic.ipynb": "e2c520150378ae4635f74509f687fa01", "plot_WDA.ipynb": "27f8de4c6d7db46497076523673eedfb", "plot_otda_linear_mapping.ipynb": "a472c767abe82020e0a58125a528785c", "plot_OT_1D_smooth.ipynb": "3a059103652225a0c78ea53895cf79e5", "plot_OT_L1_vs_L2.ipynb": "5d565b8aaf03be4309eba731127851dc", "plot_otda_color_images.ipynb": "d047d635f4987c81072383241590e21f", "plot_otda_classes.ipynb": "39087b6e98217851575f2271c22853a4", "plot_otda_d2.ipynb": "e6feae588103f2a8fab942e5f4eff483", "plot_otda_mapping.ipynb": "2f1ebbdc0f855d9e2b7adf9edec24d25", "plot_gromov.ipynb": "24f2aea489714d34779521f46d5e2c47", "plot_compute_emd.ipynb": "f5cd71cad882ec157dc8222721e9820c", "plot_OT_1D.ipynb": "b5348bdc561c07ec168a1622e5af4b93", "plot_gromov_barycenter.ipynb": "953e5047b886ec69ec621ec52f5e21d1", "plot_free_support_barycenter.ipynb": "246dd2feff4b233a4f1a553c5a202fdc", "plot_convolutional_barycenter.ipynb": "a72bb3716a1baaffd81ae267a673f9b6", "plot_otda_semi_supervised.ipynb": "f6dfb02ba2bbd939408ffcd22a3b007c", "plot_OT_2D_samples.ipynb": "07dbc14859fa019a966caa79fa0825bd", "plot_barycenter_lp_vs_entropic.ipynb": "51833e8c76aaedeba9599ac7a30eb357"}
{"plot_otda_mapping_colors_images.ipynb": "cc8bf9a857f52e4a159fe71dfda19018", "plot_optim_OTreg.ipynb": "481801bb0d133ef350a65179cf8f739a", "plot_otda_color_images.ipynb": "f804d5806c7ac1a0901e4542b1eaa77b", "plot_stochastic.ipynb": "e18253354c8c1d72567a4259eb1094f7", "plot_WDA.ipynb": "27f8de4c6d7db46497076523673eedfb", "plot_otda_linear_mapping.ipynb": "a472c767abe82020e0a58125a528785c", "plot_OT_1D_smooth.ipynb": "3a059103652225a0c78ea53895cf79e5", "plot_OT_L1_vs_L2.ipynb": "5d565b8aaf03be4309eba731127851dc", "plot_barycenter_1D.ipynb": "5f6fb8aebd8e2e91ebc77c923cb112b3", "plot_otda_classes.ipynb": "39087b6e98217851575f2271c22853a4", "plot_otda_d2.ipynb": "e6feae588103f2a8fab942e5f4eff483", "plot_otda_mapping.ipynb": "2f1ebbdc0f855d9e2b7adf9edec24d25", "plot_gromov.ipynb": "24f2aea489714d34779521f46d5e2c47", "plot_compute_emd.ipynb": "f5cd71cad882ec157dc8222721e9820c", "plot_OT_1D.ipynb": "b5348bdc561c07ec168a1622e5af4b93", "plot_gromov_barycenter.ipynb": "953e5047b886ec69ec621ec52f5e21d1", "plot_free_support_barycenter.ipynb": "246dd2feff4b233a4f1a553c5a202fdc", "plot_convolutional_barycenter.ipynb": "a72bb3716a1baaffd81ae267a673f9b6", "plot_otda_semi_supervised.ipynb": "f6dfb02ba2bbd939408ffcd22a3b007c", "plot_OT_2D_samples.ipynb": "07dbc14859fa019a966caa79fa0825bd", "plot_barycenter_lp_vs_entropic.ipynb": "51833e8c76aaedeba9599ac7a30eb357"}
Binary file modified docs/source/auto_examples/auto_examples_jupyter.zip
Binary file not shown.
Binary file modified docs/source/auto_examples/auto_examples_python.zip
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion docs/source/auto_examples/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,7 @@ This is a gallery of all the POT example files.

.. raw:: html

<div class="sphx-glr-thumbcontainer" tooltip="This example presents a way of transferring colors between two image with Optimal Transport as ...">
<div class="sphx-glr-thumbcontainer" tooltip="This example presents a way of transferring colors between two images with Optimal Transport as...">

.. only:: html

Expand Down
194 changes: 97 additions & 97 deletions docs/source/auto_examples/plot_otda_color_images.ipynb
Original file line number Diff line number Diff line change
@@ -1,144 +1,144 @@
{
"nbformat_minor": 0,
"nbformat": 4,
"cells": [
{
"execution_count": null,
"cell_type": "code",
"source": [
"%matplotlib inline"
],
"outputs": [],
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
}
},
{
},
"outputs": [],
"source": [
"\n# OT for image color adaptation\n\n\nThis example presents a way of transferring colors between two image\nwith Optimal Transport as introduced in [6]\n\n[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014).\nRegularized discrete optimal transport.\nSIAM Journal on Imaging Sciences, 7(3), 1853-1882.\n\n"
],
"cell_type": "markdown",
"metadata": {}
},
"%matplotlib inline"
]
},
{
"execution_count": null,
"cell_type": "code",
"cell_type": "markdown",
"metadata": {},
"source": [
"# Authors: Remi Flamary <remi.flamary@unice.fr>\n# Stanislas Chambon <stan.chambon@gmail.com>\n#\n# License: MIT License\n\nimport numpy as np\nfrom scipy import ndimage\nimport matplotlib.pylab as pl\nimport ot\n\n\nr = np.random.RandomState(42)\n\n\ndef im2mat(I):\n \"\"\"Converts and image to matrix (one pixel per line)\"\"\"\n return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))\n\n\ndef mat2im(X, shape):\n \"\"\"Converts back a matrix to an image\"\"\"\n return X.reshape(shape)\n\n\ndef minmax(I):\n return np.clip(I, 0, 1)"
],
"outputs": [],
"\n# OT for image color adaptation\n\n\nThis example presents a way of transferring colors between two images\nwith Optimal Transport as introduced in [6]\n\n[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014).\nRegularized discrete optimal transport.\nSIAM Journal on Imaging Sciences, 7(3), 1853-1882.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
}
},
},
"outputs": [],
"source": [
"# Authors: Remi Flamary <remi.flamary@unice.fr>\n# Stanislas Chambon <stan.chambon@gmail.com>\n#\n# License: MIT License\n\nimport numpy as np\nfrom scipy import ndimage\nimport matplotlib.pylab as pl\nimport ot\n\n\nr = np.random.RandomState(42)\n\n\ndef im2mat(I):\n \"\"\"Converts an image to matrix (one pixel per line)\"\"\"\n return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))\n\n\ndef mat2im(X, shape):\n \"\"\"Converts back a matrix to an image\"\"\"\n return X.reshape(shape)\n\n\ndef minmax(I):\n return np.clip(I, 0, 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generate data\n-------------\n\n"
],
"cell_type": "markdown",
"metadata": {}
},
]
},
{
"execution_count": null,
"cell_type": "code",
"source": [
"# Loading images\nI1 = ndimage.imread('../data/ocean_day.jpg').astype(np.float64) / 256\nI2 = ndimage.imread('../data/ocean_sunset.jpg').astype(np.float64) / 256\n\nX1 = im2mat(I1)\nX2 = im2mat(I2)\n\n# training samples\nnb = 1000\nidx1 = r.randint(X1.shape[0], size=(nb,))\nidx2 = r.randint(X2.shape[0], size=(nb,))\n\nXs = X1[idx1, :]\nXt = X2[idx2, :]"
],
"outputs": [],
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
}
},
},
"outputs": [],
"source": [
"# Loading images\nI1 = ndimage.imread('../data/ocean_day.jpg').astype(np.float64) / 256\nI2 = ndimage.imread('../data/ocean_sunset.jpg').astype(np.float64) / 256\n\nX1 = im2mat(I1)\nX2 = im2mat(I2)\n\n# training samples\nnb = 1000\nidx1 = r.randint(X1.shape[0], size=(nb,))\nidx2 = r.randint(X2.shape[0], size=(nb,))\n\nXs = X1[idx1, :]\nXt = X2[idx2, :]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plot original image\n-------------------\n\n"
],
"cell_type": "markdown",
"metadata": {}
},
]
},
{
"execution_count": null,
"cell_type": "code",
"source": [
"pl.figure(1, figsize=(6.4, 3))\n\npl.subplot(1, 2, 1)\npl.imshow(I1)\npl.axis('off')\npl.title('Image 1')\n\npl.subplot(1, 2, 2)\npl.imshow(I2)\npl.axis('off')\npl.title('Image 2')"
],
"outputs": [],
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
}
},
},
"outputs": [],
"source": [
"pl.figure(1, figsize=(6.4, 3))\n\npl.subplot(1, 2, 1)\npl.imshow(I1)\npl.axis('off')\npl.title('Image 1')\n\npl.subplot(1, 2, 2)\npl.imshow(I2)\npl.axis('off')\npl.title('Image 2')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Scatter plot of colors\n----------------------\n\n"
],
"cell_type": "markdown",
"metadata": {}
},
]
},
{
"execution_count": null,
"cell_type": "code",
"source": [
"pl.figure(2, figsize=(6.4, 3))\n\npl.subplot(1, 2, 1)\npl.scatter(Xs[:, 0], Xs[:, 2], c=Xs)\npl.axis([0, 1, 0, 1])\npl.xlabel('Red')\npl.ylabel('Blue')\npl.title('Image 1')\n\npl.subplot(1, 2, 2)\npl.scatter(Xt[:, 0], Xt[:, 2], c=Xt)\npl.axis([0, 1, 0, 1])\npl.xlabel('Red')\npl.ylabel('Blue')\npl.title('Image 2')\npl.tight_layout()"
],
"outputs": [],
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
}
},
},
"outputs": [],
"source": [
"pl.figure(2, figsize=(6.4, 3))\n\npl.subplot(1, 2, 1)\npl.scatter(Xs[:, 0], Xs[:, 2], c=Xs)\npl.axis([0, 1, 0, 1])\npl.xlabel('Red')\npl.ylabel('Blue')\npl.title('Image 1')\n\npl.subplot(1, 2, 2)\npl.scatter(Xt[:, 0], Xt[:, 2], c=Xt)\npl.axis([0, 1, 0, 1])\npl.xlabel('Red')\npl.ylabel('Blue')\npl.title('Image 2')\npl.tight_layout()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Instantiate the different transport algorithms and fit them\n-----------------------------------------------------------\n\n"
],
"cell_type": "markdown",
"metadata": {}
},
]
},
{
"execution_count": null,
"cell_type": "code",
"source": [
"# EMDTransport\not_emd = ot.da.EMDTransport()\not_emd.fit(Xs=Xs, Xt=Xt)\n\n# SinkhornTransport\not_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1)\not_sinkhorn.fit(Xs=Xs, Xt=Xt)\n\n# prediction between images (using out of sample prediction as in [6])\ntransp_Xs_emd = ot_emd.transform(Xs=X1)\ntransp_Xt_emd = ot_emd.inverse_transform(Xt=X2)\n\ntransp_Xs_sinkhorn = ot_emd.transform(Xs=X1)\ntransp_Xt_sinkhorn = ot_emd.inverse_transform(Xt=X2)\n\nI1t = minmax(mat2im(transp_Xs_emd, I1.shape))\nI2t = minmax(mat2im(transp_Xt_emd, I2.shape))\n\nI1te = minmax(mat2im(transp_Xs_sinkhorn, I1.shape))\nI2te = minmax(mat2im(transp_Xt_sinkhorn, I2.shape))"
],
"outputs": [],
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
}
},
},
"outputs": [],
"source": [
"# EMDTransport\not_emd = ot.da.EMDTransport()\not_emd.fit(Xs=Xs, Xt=Xt)\n\n# SinkhornTransport\not_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1)\not_sinkhorn.fit(Xs=Xs, Xt=Xt)\n\n# prediction between images (using out of sample prediction as in [6])\ntransp_Xs_emd = ot_emd.transform(Xs=X1)\ntransp_Xt_emd = ot_emd.inverse_transform(Xt=X2)\n\ntransp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)\ntransp_Xt_sinkhorn = ot_sinkhorn.inverse_transform(Xt=X2)\n\nI1t = minmax(mat2im(transp_Xs_emd, I1.shape))\nI2t = minmax(mat2im(transp_Xt_emd, I2.shape))\n\nI1te = minmax(mat2im(transp_Xs_sinkhorn, I1.shape))\nI2te = minmax(mat2im(transp_Xt_sinkhorn, I2.shape))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plot new images\n---------------\n\n"
],
"cell_type": "markdown",
"metadata": {}
},
]
},
{
"execution_count": null,
"cell_type": "code",
"source": [
"pl.figure(3, figsize=(8, 4))\n\npl.subplot(2, 3, 1)\npl.imshow(I1)\npl.axis('off')\npl.title('Image 1')\n\npl.subplot(2, 3, 2)\npl.imshow(I1t)\npl.axis('off')\npl.title('Image 1 Adapt')\n\npl.subplot(2, 3, 3)\npl.imshow(I1te)\npl.axis('off')\npl.title('Image 1 Adapt (reg)')\n\npl.subplot(2, 3, 4)\npl.imshow(I2)\npl.axis('off')\npl.title('Image 2')\n\npl.subplot(2, 3, 5)\npl.imshow(I2t)\npl.axis('off')\npl.title('Image 2 Adapt')\n\npl.subplot(2, 3, 6)\npl.imshow(I2te)\npl.axis('off')\npl.title('Image 2 Adapt (reg)')\npl.tight_layout()\n\npl.show()"
],
"outputs": [],
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
}
},
"outputs": [],
"source": [
"pl.figure(3, figsize=(8, 4))\n\npl.subplot(2, 3, 1)\npl.imshow(I1)\npl.axis('off')\npl.title('Image 1')\n\npl.subplot(2, 3, 2)\npl.imshow(I1t)\npl.axis('off')\npl.title('Image 1 Adapt')\n\npl.subplot(2, 3, 3)\npl.imshow(I1te)\npl.axis('off')\npl.title('Image 1 Adapt (reg)')\n\npl.subplot(2, 3, 4)\npl.imshow(I2)\npl.axis('off')\npl.title('Image 2')\n\npl.subplot(2, 3, 5)\npl.imshow(I2t)\npl.axis('off')\npl.title('Image 2 Adapt')\n\npl.subplot(2, 3, 6)\npl.imshow(I2te)\npl.axis('off')\npl.title('Image 2 Adapt (reg)')\npl.tight_layout()\n\npl.show()"
]
}
],
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"name": "python2",
"language": "python"
},
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"mimetype": "text/x-python",
"nbconvert_exporter": "python",
"name": "python",
"file_extension": ".py",
"version": "2.7.12",
"pygments_lexer": "ipython2",
"codemirror_mode": {
"version": 2,
"name": "ipython"
}
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
8 changes: 4 additions & 4 deletions docs/source/auto_examples/plot_otda_color_images.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
OT for image color adaptation
=============================

This example presents a way of transferring colors between two image
This example presents a way of transferring colors between two images
with Optimal Transport as introduced in [6]

[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014).
Expand All @@ -27,7 +27,7 @@


def im2mat(I):
"""Converts and image to matrix (one pixel per line)"""
"""Converts an image to matrix (one pixel per line)"""
return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))


Expand Down Expand Up @@ -115,8 +115,8 @@ def minmax(I):
transp_Xs_emd = ot_emd.transform(Xs=X1)
transp_Xt_emd = ot_emd.inverse_transform(Xt=X2)

transp_Xs_sinkhorn = ot_emd.transform(Xs=X1)
transp_Xt_sinkhorn = ot_emd.inverse_transform(Xt=X2)
transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)
transp_Xt_sinkhorn = ot_sinkhorn.inverse_transform(Xt=X2)

I1t = minmax(mat2im(transp_Xs_emd, I1.shape))
I2t = minmax(mat2im(transp_Xt_emd, I2.shape))
Expand Down
21 changes: 13 additions & 8 deletions docs/source/auto_examples/plot_otda_color_images.rst
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
OT for image color adaptation
=============================

This example presents a way of transferring colors between two image
This example presents a way of transferring colors between two images
with Optimal Transport as introduced in [6]

[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014).
Expand All @@ -34,7 +34,7 @@ SIAM Journal on Imaging Sciences, 7(3), 1853-1882.


def im2mat(I):
"""Converts and image to matrix (one pixel per line)"""
"""Converts an image to matrix (one pixel per line)"""
return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))


Expand Down Expand Up @@ -168,8 +168,8 @@ Instantiate the different transport algorithms and fit them
transp_Xs_emd = ot_emd.transform(Xs=X1)
transp_Xt_emd = ot_emd.inverse_transform(Xt=X2)

transp_Xs_sinkhorn = ot_emd.transform(Xs=X1)
transp_Xt_sinkhorn = ot_emd.inverse_transform(Xt=X2)
transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)
transp_Xt_sinkhorn = ot_sinkhorn.inverse_transform(Xt=X2)

I1t = minmax(mat2im(transp_Xs_emd, I1.shape))
I2t = minmax(mat2im(transp_Xt_emd, I2.shape))
Expand Down Expand Up @@ -235,11 +235,13 @@ Plot new images



**Total running time of the script:** ( 3 minutes 16.469 seconds)
**Total running time of the script:** ( 3 minutes 55.541 seconds)



.. container:: sphx-glr-footer
.. only :: html

.. container:: sphx-glr-footer


.. container:: sphx-glr-download
Expand All @@ -252,6 +254,9 @@ Plot new images

:download:`Download Jupyter notebook: plot_otda_color_images.ipynb <plot_otda_color_images.ipynb>`

.. rst-class:: sphx-glr-signature

`Generated by Sphinx-Gallery <http://sphinx-gallery.readthedocs.io>`_
.. only:: html

.. rst-class:: sphx-glr-signature

`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.readthedocs.io>`_
Loading