Skip to content
3 changes: 3 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -164,6 +164,7 @@ The contributors to this library are:
* Erwan Vautier (Gromov-Wasserstein)
* [Kilian Fatras](https://kilianfatras.github.io/)
* [Alain Rakotomamonjy](https://sites.google.com/site/alainrakotomamonjy/home)
* [Vayer Titouan](https://tvayer.github.io/)

This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code (in various languages):

Expand Down Expand Up @@ -233,3 +234,5 @@ You can also post bug reports and feature requests in Github issues. Make sure t
[22] J. Altschuler, J.Weed, P. Rigollet, (2017) [Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration](https://papers.nips.cc/paper/6792-near-linear-time-approximation-algorithms-for-optimal-transport-via-sinkhorn-iteration.pdf), Advances in Neural Information Processing Systems (NIPS) 31

[23] Aude, G., Peyré, G., Cuturi, M., [Learning Generative Models with Sinkhorn Divergences](https://arxiv.org/abs/1706.00292), Proceedings of the Twenty-First International Conference on Artficial Intelligence and Statistics, (AISTATS) 21, 2018

[24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N. (2019). [Optimal Transport for structured data with application on graphs](http://proceedings.mlr.press/v97/titouan19a.html) Proceedings of the 36th International Conference on Machine Learning (ICML).
184 changes: 184 additions & 0 deletions examples/plot_barycenter_fgw.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
# -*- coding: utf-8 -*-
"""
=================================
Plot graphs' barycenter using FGW
=================================

This example illustrates the computation barycenter of labeled graphs using FGW

Requires networkx >=2

.. [18] Vayer Titouan, Chapel Laetitia, Flamary R{\'e}mi, Tavenard Romain
and Courty Nicolas
"Optimal Transport for structured data with application on graphs"
International Conference on Machine Learning (ICML). 2019.

"""

# Author: Titouan Vayer <titouan.vayer@irisa.fr>
#
# License: MIT License

#%% load libraries
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
import math
from scipy.sparse.csgraph import shortest_path
import matplotlib.colors as mcol
from matplotlib import cm
from ot.gromov import fgw_barycenters
#%% Graph functions


def find_thresh(C, inf=0.5, sup=3, step=10):
""" Trick to find the adequate thresholds from where value of the C matrix are considered close enough to say that nodes are connected
Tthe threshold is found by a linesearch between values "inf" and "sup" with "step" thresholds tested.
The optimal threshold is the one which minimizes the reconstruction error between the shortest_path matrix coming from the thresholded adjency matrix
and the original matrix.
Parameters
----------
C : ndarray, shape (n_nodes,n_nodes)
The structure matrix to threshold
inf : float
The beginning of the linesearch
sup : float
The end of the linesearch
step : integer
Number of thresholds tested
"""
dist = []
search = np.linspace(inf, sup, step)
for thresh in search:
Cprime = sp_to_adjency(C, 0, thresh)
SC = shortest_path(Cprime, method='D')
SC[SC == float('inf')] = 100
dist.append(np.linalg.norm(SC - C))
return search[np.argmin(dist)], dist


def sp_to_adjency(C, threshinf=0.2, threshsup=1.8):
""" Thresholds the structure matrix in order to compute an adjency matrix.
All values between threshinf and threshsup are considered representing connected nodes and set to 1. Else are set to 0
Parameters
----------
C : ndarray, shape (n_nodes,n_nodes)
The structure matrix to threshold
threshinf : float
The minimum value of distance from which the new value is set to 1
threshsup : float
The maximum value of distance from which the new value is set to 1
Returns
-------
C : ndarray, shape (n_nodes,n_nodes)
The threshold matrix. Each element is in {0,1}
"""
H = np.zeros_like(C)
np.fill_diagonal(H, np.diagonal(C))
C = C - H
C = np.minimum(np.maximum(C, threshinf), threshsup)
C[C == threshsup] = 0
C[C != 0] = 1

return C


def build_noisy_circular_graph(N=20, mu=0, sigma=0.3, with_noise=False, structure_noise=False, p=None):
""" Create a noisy circular graph
"""
g = nx.Graph()
g.add_nodes_from(list(range(N)))
for i in range(N):
noise = float(np.random.normal(mu, sigma, 1))
if with_noise:
g.add_node(i, attr_name=math.sin((2 * i * math.pi / N)) + noise)
else:
g.add_node(i, attr_name=math.sin(2 * i * math.pi / N))
g.add_edge(i, i + 1)
if structure_noise:
randomint = np.random.randint(0, p)
if randomint == 0:
if i <= N - 3:
g.add_edge(i, i + 2)
if i == N - 2:
g.add_edge(i, 0)
if i == N - 1:
g.add_edge(i, 1)
g.add_edge(N, 0)
noise = float(np.random.normal(mu, sigma, 1))
if with_noise:
g.add_node(N, attr_name=math.sin((2 * N * math.pi / N)) + noise)
else:
g.add_node(N, attr_name=math.sin(2 * N * math.pi / N))
return g


def graph_colors(nx_graph, vmin=0, vmax=7):
cnorm = mcol.Normalize(vmin=vmin, vmax=vmax)
cpick = cm.ScalarMappable(norm=cnorm, cmap='viridis')
cpick.set_array([])
val_map = {}
for k, v in nx.get_node_attributes(nx_graph, 'attr_name').items():
val_map[k] = cpick.to_rgba(v)
colors = []
for node in nx_graph.nodes():
colors.append(val_map[node])
return colors

##############################################################################
# Generate data
# -------------

#%% circular dataset
# We build a dataset of noisy circular graphs.
# Noise is added on the structures by random connections and on the features by gaussian noise.


np.random.seed(30)
X0 = []
for k in range(9):
X0.append(build_noisy_circular_graph(np.random.randint(15, 25), with_noise=True, structure_noise=True, p=3))

##############################################################################
# Plot data
# ---------

#%% Plot graphs

plt.figure(figsize=(8, 10))
for i in range(len(X0)):
plt.subplot(3, 3, i + 1)
g = X0[i]
pos = nx.kamada_kawai_layout(g)
nx.draw(g, pos=pos, node_color=graph_colors(g, vmin=-1, vmax=1), with_labels=False, node_size=100)
plt.suptitle('Dataset of noisy graphs. Color indicates the label', fontsize=20)
plt.show()

##############################################################################
# Barycenter computation
# ----------------------

#%% We compute the barycenter using FGW. Structure matrices are computed using the shortest_path distance in the graph
# Features distances are the euclidean distances
Cs = [shortest_path(nx.adjacency_matrix(x)) for x in X0]
ps = [np.ones(len(x.nodes())) / len(x.nodes()) for x in X0]
Ys = [np.array([v for (k, v) in nx.get_node_attributes(x, 'attr_name').items()]).reshape(-1, 1) for x in X0]
lambdas = np.array([np.ones(len(Ys)) / len(Ys)]).ravel()
sizebary = 15 # we choose a barycenter with 15 nodes

A, C, log = fgw_barycenters(sizebary, Ys, Cs, ps, lambdas, alpha=0.95)

##############################################################################
# Plot Barycenter
# -------------------------

#%% Create the barycenter
bary = nx.from_numpy_matrix(sp_to_adjency(C, threshinf=0, threshsup=find_thresh(C, sup=100, step=100)[0]))
for i, v in enumerate(A.ravel()):
bary.add_node(i, attr_name=v)

#%%
pos = nx.kamada_kawai_layout(bary)
nx.draw(bary, pos=pos, node_color=graph_colors(bary, vmin=-1, vmax=1), with_labels=False)
plt.suptitle('Barycenter', fontsize=20)
plt.show()
173 changes: 173 additions & 0 deletions examples/plot_fgw.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
# -*- coding: utf-8 -*-
"""
==============================
Plot Fused-gromov-Wasserstein
==============================

This example illustrates the computation of FGW for 1D measures[18].

.. [18] Vayer Titouan, Chapel Laetitia, Flamary R{\'e}mi, Tavenard Romain
and Courty Nicolas
"Optimal Transport for structured data with application on graphs"
International Conference on Machine Learning (ICML). 2019.

"""

# Author: Titouan Vayer <titouan.vayer@irisa.fr>
#
# License: MIT License

import matplotlib.pyplot as pl
import numpy as np
import ot
from ot.gromov import gromov_wasserstein, fused_gromov_wasserstein

##############################################################################
# Generate data
# ---------

#%% parameters
# We create two 1D random measures
n = 20 # number of points in the first distribution
n2 = 30 # number of points in the second distribution
sig = 1 # std of first distribution
sig2 = 0.1 # std of second distribution

np.random.seed(0)

phi = np.arange(n)[:, None]
xs = phi + sig * np.random.randn(n, 1)
ys = np.vstack((np.ones((n // 2, 1)), 0 * np.ones((n // 2, 1)))) + sig2 * np.random.randn(n, 1)

phi2 = np.arange(n2)[:, None]
xt = phi2 + sig * np.random.randn(n2, 1)
yt = np.vstack((np.ones((n2 // 2, 1)), 0 * np.ones((n2 // 2, 1)))) + sig2 * np.random.randn(n2, 1)
yt = yt[::-1, :]

p = ot.unif(n)
q = ot.unif(n2)

##############################################################################
# Plot data
# ---------

#%% plot the distributions

pl.close(10)
pl.figure(10, (7, 7))

pl.subplot(2, 1, 1)

pl.scatter(ys, xs, c=phi, s=70)
pl.ylabel('Feature value a', fontsize=20)
pl.title('$\mu=\sum_i \delta_{x_i,a_i}$', fontsize=25, usetex=True, y=1)
pl.xticks(())
pl.yticks(())
pl.subplot(2, 1, 2)
pl.scatter(yt, xt, c=phi2, s=70)
pl.xlabel('coordinates x/y', fontsize=25)
pl.ylabel('Feature value b', fontsize=20)
pl.title('$\\nu=\sum_j \delta_{y_j,b_j}$', fontsize=25, usetex=True, y=1)
pl.yticks(())
pl.tight_layout()
pl.show()

##############################################################################
# Create structure matrices and across-feature distance matrix
# ---------

#%% Structure matrices and across-features distance matrix
C1 = ot.dist(xs)
C2 = ot.dist(xt)
M = ot.dist(ys, yt)
w1 = ot.unif(C1.shape[0])
w2 = ot.unif(C2.shape[0])
Got = ot.emd([], [], M)

##############################################################################
# Plot matrices
# ---------

#%%
cmap = 'Reds'
pl.close(10)
pl.figure(10, (5, 5))
fs = 15
l_x = [0, 5, 10, 15]
l_y = [0, 5, 10, 15, 20, 25]
gs = pl.GridSpec(5, 5)

ax1 = pl.subplot(gs[3:, :2])

pl.imshow(C1, cmap=cmap, interpolation='nearest')
pl.title("$C_1$", fontsize=fs)
pl.xlabel("$k$", fontsize=fs)
pl.ylabel("$i$", fontsize=fs)
pl.xticks(l_x)
pl.yticks(l_x)

ax2 = pl.subplot(gs[:3, 2:])

pl.imshow(C2, cmap=cmap, interpolation='nearest')
pl.title("$C_2$", fontsize=fs)
pl.ylabel("$l$", fontsize=fs)
#pl.ylabel("$l$",fontsize=fs)
pl.xticks(())
pl.yticks(l_y)
ax2.set_aspect('auto')

ax3 = pl.subplot(gs[3:, 2:], sharex=ax2, sharey=ax1)
pl.imshow(M, cmap=cmap, interpolation='nearest')
pl.yticks(l_x)
pl.xticks(l_y)
pl.ylabel("$i$", fontsize=fs)
pl.title("$M_{AB}$", fontsize=fs)
pl.xlabel("$j$", fontsize=fs)
pl.tight_layout()
ax3.set_aspect('auto')
pl.show()

##############################################################################
# Compute FGW/GW
# ---------

#%% Computing FGW and GW
alpha = 1e-3

ot.tic()
Gwg, logw = fused_gromov_wasserstein(M, C1, C2, p, q, loss_fun='square_loss', alpha=alpha, verbose=True, log=True)
ot.toc()

#%reload_ext WGW
Gg, log = gromov_wasserstein(C1, C2, p, q, loss_fun='square_loss', verbose=True, log=True)

##############################################################################
# Visualize transport matrices
# ---------

#%% visu OT matrix
cmap = 'Blues'
fs = 15
pl.figure(2, (13, 5))
pl.clf()
pl.subplot(1, 3, 1)
pl.imshow(Got, cmap=cmap, interpolation='nearest')
#pl.xlabel("$y$",fontsize=fs)
pl.ylabel("$i$", fontsize=fs)
pl.xticks(())

pl.title('Wasserstein ($M$ only)')

pl.subplot(1, 3, 2)
pl.imshow(Gg, cmap=cmap, interpolation='nearest')
pl.title('Gromov ($C_1,C_2$ only)')
pl.xticks(())
pl.subplot(1, 3, 3)
pl.imshow(Gwg, cmap=cmap, interpolation='nearest')
pl.title('FGW ($M+C_1,C_2$)')

pl.xlabel("$j$", fontsize=fs)
pl.ylabel("$i$", fontsize=fs)

pl.tight_layout()
pl.show()
1 change: 1 addition & 0 deletions ot/bregman.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
# Author: Remi Flamary <remi.flamary@unice.fr>
# Nicolas Courty <ncourty@irisa.fr>
# Kilian Fatras <kilian.fatras@irisa.fr>
# Titouan Vayer <titouan.vayer@irisa.fr>
#
# License: MIT License

Expand Down
Loading