Skip to content

Implementation of ViViT: A Video Vision Transformer

License

Notifications You must be signed in to change notification settings

QIANsofia1128/ViViT-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ViViT: A Video Vision Transformer

Unofficial implementation of ViViT: A Video Vision Transformer.

Notes:

  • This is in WIP.
  • Model 2 is implemented, Model 3 and Model 4 isn't.

Usage:

img = torch.ones([1, 16, 3, 224, 224])

model = ViViT(224, 16, 100, 16)
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
print('Trainable Parameters: %.3fM' % parameters)

out = model(img)

print("Shape of out :", out.shape)      # [B, num_classes]

Citation:

@misc{arnab2021vivit,
      title={ViViT: A Video Vision Transformer}, 
      author={Anurag Arnab and Mostafa Dehghani and Georg Heigold and Chen Sun and Mario Lučić and Cordelia Schmid},
      year={2021},
      eprint={2103.15691},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement:

About

Implementation of ViViT: A Video Vision Transformer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%