We will focus on how to do depth estimation using deep learning and traditional stereo matching methods.
1.FlowNet:Learning Optical Flow with Convolutional Networks(ICCV2015)
2.Computing the Stereo Matching Cost with a Convolutional Neural Network(cvpr2015)
1.DispNet:A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimatimation(cvpr2016)
2.Deep stereo fusion: combining multiple disparity hypotheses with deep-learning(3DV2016)
3.Efficient Deep Learning for Stereo Matching(cvpr2016)
1.GCNet:End-to-end learning of geometry and context for deep stereo regression(iccv2017)
2.Self-Supervised Learning for Stereo Matching with Self-Improving Ability(arxiv2017)
3.Unsupervised Learning of Stereo Matching(ICCV2017)
4.End-to-End Training of Hybrid CNN-CRF Models for Stereo(CVPR2017)
5.FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks(CVPR2017)
6.Monodepth:Unsupervised Monocular Depth Estimation with Left-Right Consistency(cvpr2017)
1.Deep Material-aware Cross-spectral Stereo Matching(cvpr2018)
2.Deep Stereo Matching with Explicit Cost Aggregation Sub-Architecture(AAAI2018)
3.Deep Virtual Stereo Odometry:Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry(ECCV2018)
4.DenseMepNet:Fast Disparity Estimation using Dense Networks(ICRA2018)
5.Deep Ordinal Regression Network for Monocular Depth Estimation(cvpr2018)
6.Learning for Disparity Estimation through Feature Constancy(cvpr2018)
7.Left-Right Comparative Recurrent Model for Stereo Matching(CVPR2018)
8.MSFNet:End-to-End Learning of Multi-scale Convolutional Neural Network for Stereo Matching(ACML2018)
9.MVSNet:Depth Inference for Unstructured Multi-view Stereo(Eccv2018)
10.Practical Deep Stereo (PDS):Toward applications-friendly deep stereo matching(2018)
11.T2Net:Synthetic-to-Realistic Translation for Solving Single-Image Depth Estimation Tasks(ECCV2018)
12.Multi-scale CNN stereo and pattern removal technique for underwater active stereo system(3DV2018)
13.ASN-ActiveStereoNet End-to-End Self-Supervised Learning for Active Stereo Systems(ECCV2018)
14.Sparse_Cost_Volume_for_Efficient_Stereo_Matching(2018)
15.StereoNet:Guided Hierarchical Refinement for Real-Time Edge-Aware Depth Prediction(ECCV2018)
16.Pyramid Stereo Matching Network(cvpr2018)
17.Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains(cvpr2018)
18.Megadepth: Learning single-view depth prediction from internet photos(CVPR2018)
19.Look Deeper into Depth: Monocular Depth Estimation with Semantic Booster and Attention-Driven Loss(ECCV2018)
1.360SD-Net:360° Stereo Depth Estimation with Learnable Cost Volume(iccvw2019)
2.AnyNet:Anytime Stereo Image Depth Estimation on Mobile Devices(ICRA2019)
3.CNN-based Cost Volume Analysis as Confidence Measure for Dense Matching(ICCVW2019)
4.CSPN:Learning Depth with Convolutional Spatial Propagation Network(2019)
5.DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch(ICCV2019)
6.DSMNet:Domain-invariant Stereo Matching Networks(2019)
7.FD-Fusion:Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations(3DV2019)
8.GA-Net:Guided Aggregation Net for End-to-end Stereo Matching(CVPR2019)
9.GSM:Guided Stereo Matching(cvpr2019)
10.GwcNet:Group-wise Correlation Stereo Network(cvpr2019)
11.HD3Stereo:Hierarchical Discrete Distribution Decomposition for Match Density Estimation(cvpr2019)
12.Shift Convolution Network for Stereo Matching(arxiv2019)
13.HSM:Hierarchical Deep Stereo Matching on High-resolution Images(cvpr2019)
14.ISGMR:Fast and Differentiable Message Passing for Stereo Vision(2019)
15.Learn Stereo, Infer Mono:Siamese Networks for Self-Supervised, Monocular, Depth Estimation(cvprw2019)
16.MADNet:Real-Time Self-Adaptive Deep Stereo(cvpr2019oral)
17.Monodepth2:Digging Into Self-Supervised Monocular Depth Estimation(iccv2019)
18.Multi-scale Cross-form Pyramid Network for Stereo Matching(ICIEA2019)
19.MVS:Recurrent MVSNet for High-resolution Multi-view Stereo Depth Inference(cvpr2019)
20.Region Deformer Networks for Unsupervised Depth Estimation from Unconstrained Monocular Videos(IJCAI2019)
21.SENSE:a Shared Encoder Network for Scene-flow Estimation(Iccv2019oral)
22.struct2depth:Depth Prediction Without the Sensors Leveraging Structure for Unsupervised Learning from Monocular Videos(AAAI2019)
23.TW-SMNet:Deep Multitask Learning of Tele-Wide Stereo Matching
24.Unsupervised Monocular Depth and Ego-motion Learning with Structure and Semantics(cvprw2019)
25.unsupervised monocular depth eatimation with clear boundaries(ICLR2019)
26.Neural rgb (r) d sensing: Depth and uncertainty from a video camera(cvpr2019oral)
27.Generating and Exploiting Probabilistic Monocular Depth Estimates(2019)
28.Learning Dense Wide Baseline Stereo Matching for People(ICCVW2019)
29.Depth from Videos in the Wild: Unsupervised Monocular Depth Learning from Unknown Cameras(ICCV2019)
30.Learning Single Camera Depth Estimation using Dual-Pixels(ICCV2019oral)
31.Single-Image Depth Inference Using Generative Adversarial Networks(sensors2019)
32.Structured Coupled Generative Adversarial Networks for Unsupervised Monocular Depth Estimation(2019)
33.EdgeStereo: An Effective Multi-Task Learning Network for Stereo Matching and Edge Detection(2019)
34.AMNet:Deep Atrous Multiscale Stereo Disparity Estimation Networks(2019)
35.Learning to Adapt for Stereo(cvpr2019)
36.Unsupervised Cross-Spectral Stereo Matching by Learning to Synthesize(AAAI2019)
37.Semantic Stereo Matching with Pyramid Cost Volumes(ICCV2019)
38.SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation(https://arxiv.org/pdf/1810.01849.pdf)
39.DSNet: Joint Learning for Scene Segmentation and Disparity Estimation(ICRA2019)
40.Mannequin:Learning the Depths of Moving People by Watching Frozen People(CVPR2019)
41. UnOS: Unified Unsupervised Optical-flow and Stereo-depth Estimation by Watching Videos(cvpr2019)
42. Depth Estimation and Semantic Segmentation from a Single RGB Image Using a Hybrid Convolutional Neural Network(sensors2019)
43. Refine and Distill: Exploiting Cycle-Inconsistency and Knowledge Distillation for Unsupervised Monocular Depth Estimation(cvpr2019)
44. Depth from a polarisation + RGB stereo pair(CVPR2019)
45. Geometry-Aware Symmetric Domain Adaptation for Monocular Depth Estimation(CVPR2019)
46. Learning monocular depth estimation infusing traditional stereo knowledge(cvpr2019)
47. Student Becoming the Master: Knowledge Amalgamation for Joint Scene Parsing, Depth Estimation, and More(CVPR2019)
48. Bridging Stereo Matching and Optical Flow via Spatiotemporal Correspondence(CVPR2019)
49. Multi-Level Context Ultra-Aggregation for Stereo Matching(CVPR2019)
50. Autodispnet: Improving disparity estimation with automl(ICCV2019)
1.AcfNet:Adaptive Unimodal Cost Volume Filtering for Deep Stereo Matching(AAAI2020)
2.Du2Net: Learning Depth Estimation from Dual-Cameras and Dual-Pixels
3.FADNet:A Fast and Accurate Network for Disparity Estimation(ICRA2020)
4.Fast_DS:Fast Deep Stereo with 2D Convolutional Processing of Cost Signatures(WACV2020)
5.LFattNet:Attention-based View Selection Networks for Light-field Disparity Estimation(AAAI2020)
6.CasMVSNet:Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching(cvpr2020oral)
7.Fast-MVSNet:Sparse-to-Dense Multi-View Stereo With Learned Propagation and Gauss-Newton Refinement(cvpr2020)
8.Real-Time Semantic Stereo Matching(ICRA2020)
9.Self-supervised Monocular Trained Depth Estimation using Self-attention and Discrete Disparity Volume
10.Uncertainty Estimation for End-To-End Learned Dense Stereo Matching via Probabilistic Deep Learning
11.3D Packing for Self-Supervised Monocular Depth Estimation(2020cvproral)
12.MaskFlownet: Asymmetric Feature Matching with Learnable Occlusion Mask(cvpr2020oral)
13.A Survey on Deep Learning Techniques for Stereo-based Depth Estimation(arxiv2020)
14.Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic Guidance(ECCV2020)
15. Self-supervised Object Motion and Depth Estimation from Video(CVPRW2020)
16. Improving Deep Stereo Network Generalization with Geometric Priors(arxiv2020-nvidia)
17. What Matters in Unsupervised Optical Flow(ECCV2020oral)
18. DeepSFM: Structure From Motion Via Deep Bundle Adjustment(ECCV2020)
19. Calibrating Self-supervised Monocular Depth Estimation(arxiv2020)
20. Cascade Network for Self-Supervised Monocular Depth Estimation(arxiv2020)
21. PRAFlow RVC: Pyramid Recurrent All-Pairs Field Transforms for Optical Flow Estimation in Robust Vision Challenge 2020
22. DESC:Domain Adaptation for Depth Estimation via Semantic Consistency(BMVC2020oral)
23. Improving Monocular Depth Estimation by Leveraging Structural Awareness and Complementary Datasets(ECCV2020 Y-tech)
24. CNN-Based Simultaneous Dehazing and Depth Estimation(ICRA2020)
25. Pseudo RGB-D for Self-Improving Monocular SLAM and Depth Prediction
26. Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic Guidance(ECCV2020)
27. Consistent Video Depth Estimation(SIGGRAPH 2020)
28. MiDaS-v2:Towards Robust Monocular Depth Estimation Mixing Datasets for Zero-Shot Cross-Dataset Transfer(TPAMI2020)
29. Flow2Stereo: Effective Self-Supervised Learning of Optical Flow and Stereo Matching(CVPR2020)
30. BiFuse: Monocular 360◦ Depth Estimation via Bi-Projection Fusion(CVPR2020)
31. Focus on defocus: bridging the synthetic to real domain gap for depth estimation(CVPR2020)
32. Bi3D: Stereo Depth Estimation via Binary Classifications(CVPR2020)
33. Towards Better Generalization: Joint Depth-Pose Learning without PoseNet(CVPR2020)
34. Domain Decluttering: Simplifying Images to Mitigate Synthetic-Real Domain Shift and Improve Depth Estimation(CVPR2020)
35. Stereopagnosia: Fooling Stereo Networks with Adversarial Perturbations(arxiv2020)
36. NLCA-Net a non-local context attention network for stereo matching(ATSIPA2020)
37. Adaptive confidence thresholding for semi-supervised monocular depth estimation(arxiv2020)
38. Domain-invariant Stereo Matching Networks(ECCV2020)
39. Matching-space Stereo Networks for Cross-domain Generalization(3DV2020)
40. Hierarchical Neural Architecture Search for Deep Stereo Matching(NIPs2020)
41. EDNet: Improved DispNet for Efficient Disparity Estimation(arxiv2020)
42. Monocular Depth Estimation via Listwise Ranking using the Plackett-Luce Model(arxiv2020)
43. Geometry-based Occlusion-Aware Unsupervised Stereo Matching for Autonomous Driving(arxiv2020)
44. Relative Depth Estimation as a Ranking Problem(SIU2020)
45. Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-motion(arxiv2020)
46. Learning Monocular Dense Depth from Events(3DV2020)
47. MobileDepth: Efficient Monocular Depth Prediction on Mobile Devices(arxiv2020)
48. Polka Lines:Learning Structured Illumination and Reconstruction for Active Stereo(arxiv2020)
- Symmetric Stereo Matching for Occlusion Handling(cvpr2005)
- Robust stereo matching with improved graph and surface models and occlusion handling(JVCI2010)
- A Fast Dense Stereo Matching Algorithm with an Application to 3D Occupancy Mapping using Quadrocopters(ICRA2015)
- Determining occlusions from space and time image reconstructions(cvpr2016)
- Occlusion and Error Detection for Stereo Matching and Hole Filling Using Dynamic Programming(sist2016)
- Determining occlusions from space and time image reconstructions(ICIP2017)
- Feature_Ensemble_Network_with_Occlusion Disambiguation for Accurate Patch-Based Stereo Matching(TIS2017)
- Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-supervised Object and Action Localization(ICCV2017)
- Occlusion Aware Unsupervised Learning of Optical Flow(cvpr2018)
- Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation(ECCV2018)
- One-view occlusion detection for stereo matching with a fully connected CRF model (TIP2019)
- PWOC-3D:Deep Occlusion-Aware End-to-End Scene Flow Estimation(arxiv2019)
- Segment-Based Disparity Refinement With Occlusion Handling for Stereo Matching(TIP2019)
- SelFlow: Self-Supervised Learning of Optical Flow(cvpr2019)
- StereoDRNet: Dilated Residual StereoNet(cvpr2019)
Stereo Processing by Semiglobal Matching and Mutual Information(TPAMI2008)
GPU optimization for the SGM stereo algorithms(ICCP2010)
REAL-TIME DENSE STEREO MAPPING FOR MULTI-SENSOR NAVIGATION (2010)
Real-Time Stereo Vision System using Semi-Global Matching Disparity Estimation:Architecture and FPGA-Implementation(2010)
Semi-Global Matching – Motivation, Developments and Applications (2011)
Large Scale Semi-Global Matching on the CPU(2014)
Embedded real-time stereo estimation via Semi-Global Matching on the GPU(iccs2016)
GPU-Accelerated Real-Time Stereo Matching(2017)
SGM-Nets: Semi-global matching with neural networks(CVPR2017)
GPU-enhanced Multimodal Dense Matching(2018)
Real-time CUDA-based stereo matching using cyclops2 algorithms(2018)
FD_cudaSGM:Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations(3DV2019)
QUANTITATIVE COMPARISON BETWEEN NEURAL NETWORK- AND SGM-BASED STEREO MATCHING(2019)
Half Resolution Semi-Global Stereo Matching
MISGM-GPU:Mutual Information based Semi-Global Stereo Matching on the GPU
Real-Time Semi-Global Matching Using CUDA Implementation
Real-Time Stereo Vision using Semi-Global Matching on Programmable Graphics Hardware