-
Notifications
You must be signed in to change notification settings - Fork 53
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5455f80
commit 4769775
Showing
3 changed files
with
530 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,357 @@ | ||
from .backendbase import Backend | ||
from ..circuit import Circuit | ||
from ..gate import * | ||
|
||
import numpy as np | ||
|
||
class cuSV(Backend): | ||
def _preprocess_run(self, gates, n_qubits, args, kwargs): | ||
import cupy as cp | ||
|
||
# initialize by |00...00> | ||
h_sv = np.asarray(np.full(2**n_qubits,0.0+0.0j), dtype=np.complex64) | ||
h_sv[0] = 1.0+0.0j | ||
d_sv = cp.asarray(h_sv) | ||
# returns gates, ctx. In this case, ctx = (d_sv, n_qubits) | ||
return gates, (d_sv, n_qubits) | ||
|
||
def _postprocess_run(self, ctx): | ||
return ctx[0] | ||
|
||
def _one_qubit_gate_noargs(self, gate, ctx): | ||
import cupy as cp | ||
import cuquantum | ||
from cuquantum import custatevec as cusv | ||
|
||
for idx in gate.target_iter(ctx[1]): | ||
|
||
#if you want a new gate please write down here. | ||
if gate.lowername == 'x': | ||
matrix = cp.array([ | ||
[0, 1], | ||
[1, 0] | ||
], dtype=np.complex64) | ||
elif gate.lowername == 'y': | ||
matrix = cp.array([ | ||
[0, -1j], | ||
[1j, 0] | ||
], dtype=np.complex64) | ||
elif gate.lowername == 'z': | ||
matrix = cp.array([ | ||
[1, 0], | ||
[0, -1] | ||
], dtype=np.complex64) | ||
elif gate.lowername == 'h': | ||
matrix = cp.array(np.array([ | ||
[1, 1], | ||
[1, -1] | ||
]) / np.sqrt(2), dtype=np.complex64) | ||
elif gate.lowername == 't': | ||
matrix = cp.array([ | ||
[1, 0], | ||
[0, np.exp(np.pi/4*1j)] | ||
], dtype=np.complex64) | ||
elif gate.lowername == 's': | ||
matrix = cp.array([ | ||
[1, 0], | ||
[0, 1j] | ||
], dtype=np.complex64) | ||
else: | ||
matrix = cp.asarray([1.0+0.0j, 0.0+0.0j, 0.0+0.0j, 1.0+0.0j], dtype=np.complex64) | ||
|
||
nIndexBits = ctx[1] | ||
nSvSize = (1 << nIndexBits) | ||
nTargets = 1 | ||
nControls = 0 | ||
adjoint = 0 | ||
|
||
targets = np.asarray([idx], dtype=np.int32) | ||
controls = np.asarray([], dtype=np.int32) | ||
|
||
if isinstance(matrix, cp.ndarray): | ||
matrix_ptr = matrix.data.ptr | ||
elif isinstance(matrix, np.ndarray): | ||
matrix_ptr = matrix.ctypes.data | ||
else: | ||
raise ValueError | ||
|
||
# cuStateVec handle initialization | ||
handle = cusv.create() | ||
workspaceSize = cusv.apply_matrix_get_workspace_size( | ||
handle, cuquantum.cudaDataType.CUDA_C_32F, nIndexBits, matrix_ptr, cuquantum.cudaDataType.CUDA_C_32F, | ||
cusv.MatrixLayout.ROW, adjoint, nTargets, nControls, cuquantum.ComputeType.COMPUTE_32F) | ||
|
||
# check the size of external workspace | ||
if workspaceSize > 0: | ||
workspace = cp.cuda.memory.alloc(workspaceSize) | ||
workspace_ptr = workspace.ptr | ||
else: | ||
workspace_ptr = 0 | ||
|
||
# apply gate | ||
cusv.apply_matrix( | ||
handle, ctx[0].data.ptr, cuquantum.cudaDataType.CUDA_C_32F, nIndexBits, matrix_ptr, cuquantum.cudaDataType.CUDA_C_32F, | ||
cusv.MatrixLayout.ROW, adjoint, targets.ctypes.data, nTargets, controls.ctypes.data, 0, nControls, | ||
cuquantum.ComputeType.COMPUTE_32F, workspace_ptr, workspaceSize) | ||
|
||
# destroy handle | ||
cusv.destroy(handle) | ||
|
||
return ctx | ||
|
||
gate_x = _one_qubit_gate_noargs | ||
gate_y = _one_qubit_gate_noargs | ||
gate_z = _one_qubit_gate_noargs | ||
gate_h = _one_qubit_gate_noargs | ||
gate_t = _one_qubit_gate_noargs | ||
gate_s = _one_qubit_gate_noargs | ||
|
||
def _one_qubit_gate_args_theta(self, gate, ctx): | ||
import cupy as cp | ||
import cuquantum | ||
from cuquantum import custatevec as cusv | ||
|
||
for idx in gate.target_iter(ctx[1]): | ||
|
||
#if you want a new gate please write down here. | ||
if gate.lowername == 'rx': | ||
matrix = cp.array([ | ||
[np.cos(gate.theta/2), -np.sin(gate.theta/2)*1j], | ||
[-np.sin(gate.theta/2)*1j, np.cos(gate.theta/2)] | ||
], dtype=np.complex64) | ||
elif gate.lowername == 'ry': | ||
matrix = cp.array([ | ||
[np.cos(gate.theta/2) -np.sin(gate.theta/2)], | ||
[np.sin(gate.theta/2), np.cos(gate.theta/2)] | ||
], dtype=np.complex64) | ||
elif gate.lowername == 'rz': | ||
matrix = cp.array([ | ||
[np.exp(-gate.theta/2*1j), 0], | ||
[0, np.exp(gate.theta/2*1j)] | ||
], dtype=np.complex64) | ||
elif gate.lowername == 'p': | ||
matrix = cp.array([ | ||
[1, 0], | ||
[0, np.exp(gate.theta*1j)] | ||
], dtype=np.complex64) | ||
elif gate.lowername == 'u': | ||
matrix = cp.array([ | ||
[np.cos(gate.theta/2), -np.exp(gate.lam*1j)*np.sin(gate.theta/2)], | ||
[np.exp(gate.phi*1j)*np.sin(gate.theta/2), np.exp((gate.phi+gate.lam)*1j)*np.cos(gate.theta/2)] | ||
], dtype=np.complex64) | ||
else: | ||
matrix = cp.asarray([1.0+0.0j, 0.0+0.0j, 0.0+0.0j, 1.0+0.0j], dtype=np.complex64) | ||
|
||
nIndexBits = ctx[1] | ||
nSvSize = (1 << nIndexBits) | ||
nTargets = 1 | ||
nControls = 0 | ||
adjoint = 0 | ||
|
||
targets = np.asarray([idx], dtype=np.int32) | ||
controls = np.asarray([], dtype=np.int32) | ||
|
||
if isinstance(matrix, cp.ndarray): | ||
matrix_ptr = matrix.data.ptr | ||
elif isinstance(matrix, np.ndarray): | ||
matrix_ptr = matrix.ctypes.data | ||
else: | ||
raise ValueError | ||
|
||
# cuStateVec handle initialization | ||
handle = cusv.create() | ||
workspaceSize = cusv.apply_matrix_get_workspace_size( | ||
handle, cuquantum.cudaDataType.CUDA_C_32F, nIndexBits, matrix_ptr, cuquantum.cudaDataType.CUDA_C_32F, | ||
cusv.MatrixLayout.ROW, adjoint, nTargets, nControls, cuquantum.ComputeType.COMPUTE_32F) | ||
|
||
# check the size of external workspace | ||
if workspaceSize > 0: | ||
workspace = cp.cuda.memory.alloc(workspaceSize) | ||
workspace_ptr = workspace.ptr | ||
else: | ||
workspace_ptr = 0 | ||
|
||
# apply gate | ||
cusv.apply_matrix( | ||
handle, ctx[0].data.ptr, cuquantum.cudaDataType.CUDA_C_32F, nIndexBits, matrix_ptr, cuquantum.cudaDataType.CUDA_C_32F, | ||
cusv.MatrixLayout.ROW, adjoint, targets.ctypes.data, nTargets, controls.ctypes.data, 0, nControls, | ||
cuquantum.ComputeType.COMPUTE_32F, workspace_ptr, workspaceSize) | ||
|
||
# destroy handle | ||
cusv.destroy(handle) | ||
|
||
return ctx | ||
|
||
gate_rx = _one_qubit_gate_args_theta | ||
gate_ry = _one_qubit_gate_args_theta | ||
gate_rz = _one_qubit_gate_args_theta | ||
gate_p = gate_phase = _one_qubit_gate_args_theta | ||
gate_u = _one_qubit_gate_args_theta | ||
|
||
def _two_qubit_gate_noargs(self, gate, ctx): | ||
import cupy as cp | ||
import cuquantum | ||
from cuquantum import custatevec as cusv | ||
|
||
for control, target in gate.control_target_iter(ctx[1]): | ||
|
||
if gate.lowername == 'cx': | ||
matrix = cp.asarray([ | ||
[0, 1], | ||
[1, 0] | ||
], dtype=np.complex64) | ||
elif gate.lowername == 'cy': | ||
matrix = cp.array([ | ||
[0, -1j], | ||
[1j, 0] | ||
], dtype=np.complex64) | ||
elif gate.lowername == 'cz': | ||
matrix = cp.array([ | ||
[1, 0], | ||
[0, -1] | ||
], dtype=np.complex64) | ||
else: | ||
matrix = cp.asarray([1.0+0.0j, 0.0+0.0j, 0.0+0.0j, 1.0+0.0j], dtype=np.complex64) | ||
|
||
nIndexBits = ctx[1] | ||
nSvSize = (1 << nIndexBits) | ||
nTargets = 1 | ||
nControls = 1 | ||
adjoint = 0 | ||
|
||
targets = np.asarray([target], dtype=np.int32) | ||
controls = np.asarray([control], dtype=np.int32) | ||
|
||
if isinstance(matrix, cp.ndarray): | ||
matrix_ptr = matrix.data.ptr | ||
elif isinstance(matrix, np.ndarray): | ||
matrix_ptr = matrix.ctypes.data | ||
else: | ||
raise ValueError | ||
|
||
# cuStateVec handle initialization | ||
handle = cusv.create() | ||
workspaceSize = cusv.apply_matrix_get_workspace_size( | ||
handle, cuquantum.cudaDataType.CUDA_C_32F, nIndexBits, matrix_ptr, cuquantum.cudaDataType.CUDA_C_32F, | ||
cusv.MatrixLayout.ROW, adjoint, nTargets, nControls, cuquantum.ComputeType.COMPUTE_32F) | ||
|
||
# check the size of external workspace | ||
if workspaceSize > 0: | ||
workspace = cp.cuda.memory.alloc(workspaceSize) | ||
workspace_ptr = workspace.ptr | ||
else: | ||
workspace_ptr = 0 | ||
|
||
# apply gate | ||
cusv.apply_matrix( | ||
handle, ctx[0].data.ptr, cuquantum.cudaDataType.CUDA_C_32F, nIndexBits, matrix_ptr, cuquantum.cudaDataType.CUDA_C_32F, | ||
cusv.MatrixLayout.ROW, adjoint, targets.ctypes.data, nTargets, controls.ctypes.data, 0, nControls, | ||
cuquantum.ComputeType.COMPUTE_32F, workspace_ptr, workspaceSize) | ||
|
||
# destroy handle | ||
cusv.destroy(handle) | ||
return ctx | ||
|
||
gate_cx = gate_cy = gate_cz = _two_qubit_gate_noargs | ||
|
||
# https://docs.nvidia.com/cuda/cuquantum/custatevec/getting_started.html#code-example | ||
|
||
def _three_qubit_gate_noargs(self, gate, ctx): | ||
import cupy as cp | ||
import cuquantum | ||
from cuquantum import custatevec as cusv | ||
|
||
c1, c2, target = gate.targets | ||
|
||
#if you want a new gate please write down here. | ||
if gate.lowername == 'ccx': | ||
matrix = cp.array([ | ||
[0, 1], | ||
[1, 0] | ||
], dtype=np.complex64) | ||
else: | ||
matrix = cp.asarray([1.0+0.0j, 0.0+0.0j, 0.0+0.0j, 1.0+0.0j], dtype=np.complex64) | ||
|
||
nIndexBits = ctx[1] | ||
nSvSize = (1 << nIndexBits) | ||
nTargets = 1 | ||
nControls = 2 | ||
adjoint = 0 | ||
|
||
targets = np.asarray([target], dtype=np.int32) | ||
controls = np.asarray([c1, c2], dtype=np.int32) | ||
|
||
if isinstance(matrix, cp.ndarray): | ||
matrix_ptr = matrix.data.ptr | ||
elif isinstance(matrix, np.ndarray): | ||
matrix_ptr = matrix.ctypes.data | ||
else: | ||
raise ValueError | ||
|
||
# cuStateVec handle initialization | ||
handle = cusv.create() | ||
workspaceSize = cusv.apply_matrix_get_workspace_size( | ||
handle, cuquantum.cudaDataType.CUDA_C_32F, nIndexBits, matrix_ptr, cuquantum.cudaDataType.CUDA_C_32F, | ||
cusv.MatrixLayout.ROW, adjoint, nTargets, nControls, cuquantum.ComputeType.COMPUTE_32F) | ||
|
||
# check the size of external workspace | ||
if workspaceSize > 0: | ||
workspace = cp.cuda.memory.alloc(workspaceSize) | ||
workspace_ptr = workspace.ptr | ||
else: | ||
workspace_ptr = 0 | ||
|
||
# apply gate | ||
cusv.apply_matrix( | ||
handle, ctx[0].data.ptr, cuquantum.cudaDataType.CUDA_C_32F, nIndexBits, matrix_ptr, cuquantum.cudaDataType.CUDA_C_32F, | ||
cusv.MatrixLayout.ROW, adjoint, targets.ctypes.data, nTargets, controls.ctypes.data, 0, nControls, | ||
cuquantum.ComputeType.COMPUTE_32F, workspace_ptr, workspaceSize) | ||
|
||
# destroy handle | ||
cusv.destroy(handle) | ||
|
||
return ctx | ||
|
||
gate_ccx = _three_qubit_gate_noargs | ||
|
||
# https://github.com/NVIDIA/cuQuantum/tree/main/python/samples/custatevec | ||
|
||
def _cswap(self, gate, ctx): | ||
import cupy as cp | ||
import cuquantum | ||
from cuquantum import custatevec as cusv | ||
control, t1, t2 = gate.targets | ||
|
||
#if you want a new gate please write down here. | ||
if gate.lowername != 'cswap': | ||
raise NotImplementedError() | ||
|
||
nIndexBits = ctx[1] | ||
nSvSize = (1 << nIndexBits) | ||
nBitSwaps = 1 | ||
bitSwaps = [(t1, t2)] | ||
maskLen = 1 | ||
maskBitString = [1] | ||
maskOrdering = [control] | ||
|
||
# cuStateVec handle initialization | ||
handle = cusv.create() | ||
cusv.swap_index_bits( | ||
handle, ctx[0].data.ptr, cuquantum.cudaDataType.CUDA_C_32F, nIndexBits, | ||
bitSwaps, nBitSwaps, | ||
maskBitString, maskOrdering, maskLen) | ||
|
||
# destroy handle | ||
cusv.destroy(handle) | ||
|
||
return ctx | ||
|
||
gate_cswap = _cswap | ||
|
||
def gate_measure(self, gate, ctx): | ||
import cupy as cp | ||
import cuquantum | ||
from cuquantum import custatevec as cusv | ||
return ctx | ||
|
||
gate_reset = _one_qubit_gate_noargs |
Oops, something went wrong.