forked from tingfengjushi/mymllib
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 2c86eb0
Showing
2 changed files
with
100 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
#!/usr/bin/env | ||
# -*- coding:utf-8 -*- | ||
|
||
import numpy as np | ||
|
||
def tanh(x): | ||
return np.tanh(x) | ||
|
||
def tanh_derivative(x): | ||
return 1.0 - np.tanh(x) * np.tanh(x) | ||
|
||
def logistic(x): | ||
return 1 / (1 + np.exp(-x)) | ||
|
||
def logistic_derivative(x): | ||
return logistic(x) * (1 - logistic(x) ) | ||
|
||
class NeuralNetwork: | ||
def __init__(self, layers, activation='tanh'): | ||
if activation == 'Logistic': | ||
self.activation = logistic | ||
self.activation_deriv = logistic_derivative | ||
elif activation == 'tanh': | ||
self.activation = tanh | ||
self.activation_deriv = tanh_derivative | ||
|
||
self.weights = [] | ||
for i in range(1, len(layers)-1): | ||
# [0,1) * 2 - 1 => [-1,1) => * 0.25 => [-0.25,0.25) | ||
self.weights.append( (2*np.random.random((layers[i-1] + 1, layers[i] + 1 ))-1 ) * 0.25 ) | ||
self.weights.append( (2*np.random.random((layers[i] + 1, layers[i+1] ))-1 ) * 0.25 ) | ||
# for i in range(0, len(layers)-1): | ||
# m = layers[i] # 第i层节点数 | ||
# n = layers[i+1] # 第i+1层节点数 | ||
# wm = m + 1 | ||
# wn = n + 1 | ||
# if i == len(layers)-2: | ||
# wn = n | ||
# weight = np.random.random((wm, wn)) * 2 - 1 | ||
# self.weights.append(0.25 * weight) | ||
|
||
|
||
def fit(self, X, y, learning_rate=0.2, epochs = 10000): | ||
X = np.atleast_2d(X) | ||
# temp = np.ones([X.shape[0], X.shape[1]+1]) | ||
# temp[:,0:-1] = X | ||
# X = temp | ||
X = np.column_stack((X, np.ones(len(X)))) | ||
y = np.array(y) | ||
|
||
for k in range(epochs): | ||
i = np.random.randint(X.shape[0]) | ||
a = [X[i]] | ||
# 正向计算 | ||
for l in range(len(self.weights)): | ||
a.append(self.activation( np.dot(a[l], self.weights[l])) ) | ||
# 反向传播 | ||
error = y[i] - a[-1] | ||
deltas = [error * self.activation_deriv(a[-1])] | ||
|
||
# starting backprobagation | ||
layerNum = len(a) - 2 | ||
for j in range(layerNum, 0, -1): # 倒数第二层开始 | ||
deltas.append(deltas[-1].dot(self.weights[j].T) * self.activation_deriv(a[j])) | ||
# deltas.append(deltas[-(layerNum+1-j)].dot(self.weights[j].T) * self.activation_deriv(a[j])) | ||
deltas.reverse() | ||
for i in range(len(self.weights)): | ||
layer = np.atleast_2d(a[i]) | ||
delta = np.atleast_2d(deltas[i]) | ||
self.weights[i] += learning_rate * layer.T.dot(delta) | ||
|
||
def predict(self, x): | ||
x = np.array(x) | ||
temp = np.ones(x.shape[0] + 1) | ||
temp[0:-1] = x | ||
a = temp | ||
for l in range(0, len(self.weights)): | ||
a = self.activation(np.dot(a, self.weights[l])) | ||
return a | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
#!/usr/bin/env | ||
# -*- coding:utf-8 -*- | ||
|
||
from NeuralNetwork import NeuralNetwork | ||
from DeepNeuralNetwork import DeepNeuralNetwork | ||
import numpy as np | ||
|
||
nn = NeuralNetwork([2, 2, 1], 'tanh') | ||
#nn = DeepNeuralNetwork([2, 2, 1], 'tanh') | ||
x = np.array([[0,0],[0,1],[1,0],[1,1]]) | ||
y = np.array([0,1,1,0]) | ||
nn.fit(x, y) | ||
for i in [[0,0],[0,1],[1,0],[1,1]]: | ||
print (i, nn.predict(i)) |