Skip to content

Qengineering/YoloV4-Darknet-Jetson-Nano

Repository files navigation

YoloV4 Jetson Nano

output image

YoloV4 with the Darknet framework.

License

Paper: https://arxiv.org/pdf/2004.10934.pdf

Special made for a Jetson Nano see Q-engineering deep learning examples


Benchmark.

Model size objects mAP Jetson Nano 1479 MHz RPi 4 64-OS 1950 MHz
NanoDet 320x320 80 20.6 26.2 FPS 13.0 FPS
NanoDet Plus 416x416 80 30.4 18.5 FPS 5.0 FPS
YoloFastestV2 352x352 80 24.1 38.4 FPS 18.8 FPS
YoloV2 416x416 20 19.2 10.1 FPS 3.0 FPS
YoloV3 352x352 tiny 20 16.6 17.7 FPS 4.4 FPS
YoloV4 Darknet 416x416 tiny 80 21.7 16.5 FPS 3.4 FPS
YoloV4 608x608 full 80 45.3 1.3 FPS 0.2 FPS
YoloV5 640x640 small 80 22.5 5.0 FPS 1.6 FPS
YoloV6 640x640 nano 80 35.0 10.5 FPS 2.7 FPS
YoloV7 640x640 tiny 80 38.7 8.5 FPS 2.1 FPS
YoloX 416x416 nano 80 25.8 22.6 FPS 7.0 FPS
YoloX 416x416 tiny 80 32.8 11.35 FPS 2.8 FPS
YoloX 640x640 small 80 40.5 3.65 FPS 0.9 FPS

Dependencies.

To run the application, you have to:

  • Darknet installed. Install Darknet
  • Code::Blocks installed. ($ sudo apt-get install codeblocks)

Installing the app.

To extract and run the network in Code::Blocks
$ mkdir MyDir
$ cd MyDir
$ wget https://github.com/Qengineering/YoloV4-Darknet-Jetson-Nano/archive/refs/heads/main.zip
$ unzip -j master.zip
Remove master.zip, LICENSE and README.md as they are no longer needed.
$ rm master.zip
$ rm LICENSE
$ rm README.md

Your MyDir folder must now look like this:
James.mp4
parking.jpg
main.cpp
yolov4-tiny.cfg
yolov4-tiny.weights
coco.names


Running the app.

To run the application load the project file YoloV4.cbp in Code::Blocks.
Next, follow the instructions at Hands-On.

output image


paypal