-
Notifications
You must be signed in to change notification settings - Fork 2.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add tests for NumpyMES and import in module.
- Loading branch information
1 parent
6ff00e8
commit a79aaea
Showing
4 changed files
with
233 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
225 changes: 225 additions & 0 deletions
225
test/python/algorithms/minimum_eigensolvers/test_numpy_minimum_eigensolver.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
# This code is part of Qiskit. | ||
# | ||
# (C) Copyright IBM 2022. | ||
# | ||
# This code is licensed under the Apache License, Version 2.0. You may | ||
# obtain a copy of this license in the LICENSE.txt file in the root directory | ||
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. | ||
# | ||
# Any modifications or derivative works of this code must retain this | ||
# copyright notice, and modified files need to carry a notice indicating | ||
# that they have been altered from the originals. | ||
|
||
""" Test NumPy minimum eigensolver """ | ||
|
||
import unittest | ||
from test.python.algorithms import QiskitAlgorithmsTestCase | ||
|
||
import numpy as np | ||
from ddt import ddt, data | ||
|
||
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver | ||
from qiskit.opflow import PauliSumOp, X, Y, Z | ||
|
||
|
||
@ddt | ||
class TestNumPyMinimumEigensolver(QiskitAlgorithmsTestCase): | ||
"""Test NumPy minimum eigensolver""" | ||
|
||
def setUp(self): | ||
super().setUp() | ||
self.qubit_op = PauliSumOp.from_list( | ||
[ | ||
("II", -1.052373245772859), | ||
("ZI", 0.39793742484318045), | ||
("IZ", -0.39793742484318045), | ||
("ZZ", -0.01128010425623538), | ||
("XX", 0.18093119978423156), | ||
] | ||
) | ||
|
||
aux_op1 = PauliSumOp.from_list([("II", 2.0)]) | ||
aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) | ||
self.aux_ops_list = [aux_op1, aux_op2] | ||
self.aux_ops_dict = {"aux_op1": aux_op1, "aux_op2": aux_op2} | ||
|
||
def test_cme(self): | ||
"""Basic test""" | ||
algo = NumPyMinimumEigensolver() | ||
result = algo.compute_minimum_eigenvalue( | ||
operator=self.qubit_op, aux_operators=self.aux_ops_list | ||
) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503 + 0j) | ||
self.assertEqual(len(result.aux_operator_eigenvalues), 2) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues[0], [2, 0]) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues[1], [0, 0]) | ||
|
||
def test_cme_reuse(self): | ||
"""Test reuse""" | ||
# Start with no operator or aux_operators, give via compute method | ||
algo = NumPyMinimumEigensolver() | ||
result = algo.compute_minimum_eigenvalue(operator=self.qubit_op) | ||
self.assertEqual(result.eigenvalue.dtype, np.float64) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503) | ||
self.assertIsNone(result.aux_operator_eigenvalues) | ||
|
||
# Add aux_operators and go again | ||
result = algo.compute_minimum_eigenvalue( | ||
operator=self.qubit_op, aux_operators=self.aux_ops_list | ||
) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503 + 0j) | ||
self.assertEqual(len(result.aux_operator_eigenvalues), 2) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues[0], [2, 0]) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues[1], [0, 0]) | ||
|
||
# "Remove" aux_operators and go again | ||
result = algo.compute_minimum_eigenvalue(operator=self.qubit_op, aux_operators=[]) | ||
self.assertEqual(result.eigenvalue.dtype, np.float64) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503) | ||
self.assertIsNone(result.aux_operator_eigenvalues) | ||
|
||
# Set aux_operators and go again | ||
result = algo.compute_minimum_eigenvalue( | ||
operator=self.qubit_op, aux_operators=self.aux_ops_list | ||
) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503 + 0j) | ||
self.assertEqual(len(result.aux_operator_eigenvalues), 2) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues[0], [2, 0]) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues[1], [0, 0]) | ||
|
||
# Finally just set one of aux_operators and main operator, remove aux_operators | ||
result = algo.compute_minimum_eigenvalue(operator=self.aux_ops_list[0], aux_operators=[]) | ||
self.assertAlmostEqual(result.eigenvalue, 2 + 0j) | ||
self.assertIsNone(result.aux_operator_eigenvalues) | ||
|
||
def test_cme_filter(self): | ||
"""Basic test""" | ||
|
||
# define filter criterion | ||
# pylint: disable=unused-argument | ||
def criterion(x, v, a_v): | ||
return v >= -0.5 | ||
|
||
algo = NumPyMinimumEigensolver(filter_criterion=criterion) | ||
result = algo.compute_minimum_eigenvalue( | ||
operator=self.qubit_op, aux_operators=self.aux_ops_list | ||
) | ||
self.assertAlmostEqual(result.eigenvalue, -0.22491125 + 0j) | ||
self.assertEqual(len(result.aux_operator_eigenvalues), 2) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues[0], [2, 0]) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues[1], [0, 0]) | ||
|
||
def test_cme_filter_empty(self): | ||
"""Test with filter always returning False""" | ||
|
||
# define filter criterion | ||
# pylint: disable=unused-argument | ||
def criterion(x, v, a_v): | ||
return False | ||
|
||
algo = NumPyMinimumEigensolver(filter_criterion=criterion) | ||
result = algo.compute_minimum_eigenvalue( | ||
operator=self.qubit_op, aux_operators=self.aux_ops_list | ||
) | ||
self.assertEqual(result.eigenvalue, None) | ||
self.assertEqual(result.eigenstate, None) | ||
self.assertEqual(result.aux_operator_eigenvalues, None) | ||
|
||
@data(X, Y, Z) | ||
def test_cme_1q(self, op): | ||
"""Test for 1 qubit operator""" | ||
algo = NumPyMinimumEigensolver() | ||
result = algo.compute_minimum_eigenvalue(operator=op) | ||
self.assertAlmostEqual(result.eigenvalue, -1) | ||
|
||
def test_cme_aux_ops_dict(self): | ||
"""Test dictionary compatibility of aux_operators""" | ||
# Start with an empty dictionary | ||
algo = NumPyMinimumEigensolver() | ||
result = algo.compute_minimum_eigenvalue(operator=self.qubit_op, aux_operators={}) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503 + 0j) | ||
self.assertIsNone(result.aux_operator_eigenvalues) | ||
|
||
# Add aux_operators dictionary and go again | ||
result = algo.compute_minimum_eigenvalue( | ||
operator=self.qubit_op, aux_operators=self.aux_ops_dict | ||
) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503 + 0j) | ||
self.assertEqual(len(result.aux_operator_eigenvalues), 2) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues["aux_op1"], [2, 0]) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues["aux_op2"], [0, 0]) | ||
|
||
# Add None and zero operators and go again | ||
extra_ops = {"None_op": None, "zero_op": 0, **self.aux_ops_dict} | ||
result = algo.compute_minimum_eigenvalue(operator=self.qubit_op, aux_operators=extra_ops) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503 + 0j) | ||
self.assertEqual(len(result.aux_operator_eigenvalues), 3) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues["aux_op1"], [2, 0]) | ||
np.testing.assert_array_almost_equal(result.aux_operator_eigenvalues["aux_op2"], [0, 0]) | ||
self.assertEqual(result.aux_operator_eigenvalues["zero_op"], (0.0, 0)) | ||
|
||
def test_aux_operators_list(self): | ||
"""Test list-based aux_operators.""" | ||
aux_op1 = PauliSumOp.from_list([("II", 2.0)]) | ||
aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) | ||
aux_ops = [aux_op1, aux_op2] | ||
algo = NumPyMinimumEigensolver() | ||
result = algo.compute_minimum_eigenvalue(operator=self.qubit_op, aux_operators=aux_ops) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503 + 0j) | ||
self.assertEqual(len(result.aux_operator_eigenvalues), 2) | ||
# expectation values | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0], 2, places=6) | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0], 0, places=6) | ||
# standard deviations | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0) | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.0) | ||
|
||
# Go again with additional None and zero operators | ||
extra_ops = [*aux_ops, None, 0] | ||
result = algo.compute_minimum_eigenvalue(operator=self.qubit_op, aux_operators=extra_ops) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503 + 0j) | ||
self.assertEqual(len(result.aux_operator_eigenvalues), 4) | ||
# expectation values | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0], 2, places=6) | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0], 0, places=6) | ||
self.assertIsNone(result.aux_operator_eigenvalues[2], None) | ||
self.assertEqual(result.aux_operator_eigenvalues[3][0], 0.0) | ||
# standard deviations | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0) | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.0) | ||
self.assertEqual(result.aux_operator_eigenvalues[3][1], 0.0) | ||
|
||
def test_aux_operators_dict(self): | ||
"""Test dict-based aux_operators.""" | ||
aux_op1 = PauliSumOp.from_list([("II", 2.0)]) | ||
aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) | ||
aux_ops = {"aux_op1": aux_op1, "aux_op2": aux_op2} | ||
algo = NumPyMinimumEigensolver() | ||
result = algo.compute_minimum_eigenvalue(operator=self.qubit_op, aux_operators=aux_ops) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503 + 0j) | ||
self.assertEqual(len(result.aux_operator_eigenvalues), 2) | ||
# expectation values | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][0], 2, places=6) | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][0], 0, places=6) | ||
# standard deviations | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][1], 0.0) | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][1], 0.0) | ||
|
||
# Go again with additional None and zero operators | ||
extra_ops = {**aux_ops, "None_operator": None, "zero_operator": 0} | ||
result = algo.compute_minimum_eigenvalue(operator=self.qubit_op, aux_operators=extra_ops) | ||
self.assertAlmostEqual(result.eigenvalue, -1.85727503 + 0j) | ||
self.assertEqual(len(result.aux_operator_eigenvalues), 3) | ||
# expectation values | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][0], 2, places=6) | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][0], 0, places=6) | ||
self.assertEqual(result.aux_operator_eigenvalues["zero_operator"][0], 0.0) | ||
self.assertTrue("None_operator" not in result.aux_operator_eigenvalues.keys()) | ||
# standard deviations | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][1], 0.0) | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][1], 0.0) | ||
self.assertAlmostEqual(result.aux_operator_eigenvalues["zero_operator"][1], 0.0) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters