Skip to content

Commit

Permalink
add lin_comb_qgt
Browse files Browse the repository at this point in the history
  • Loading branch information
a-matsuo committed Jan 12, 2023
1 parent e351e6f commit ced1a77
Show file tree
Hide file tree
Showing 7 changed files with 780 additions and 319 deletions.
4 changes: 2 additions & 2 deletions qiskit/algorithms/gradients/base_estimator_gradient.py
Original file line number Diff line number Diff line change
Expand Up @@ -233,11 +233,11 @@ def _postprocess(
bound_coeff = coeff
# The original gradient is a sum of the gradients of the parameters in the
# gradient circuit multiplied by the coefficients.
unique_gradient[i] += (
gradient[i] += (
float(bound_coeff)
* results.gradients[idx][g_parameter_indices[g_parameter]]
)
gradients.append(unique_gradient)
gradients.append(gradient)
metadata.append([{"parameters": parameter_indices}])
return EstimatorGradientResult(
gradients=gradients, metadata=metadata, options=results.options
Expand Down
342 changes: 342 additions & 0 deletions qiskit/algorithms/gradients/base_qgt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,342 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Abstract base class of the Quantum Fisher Information (QFI).
"""

from __future__ import annotations

from abc import ABC, abstractmethod
from collections.abc import Sequence
from copy import copy

import numpy as np

from qiskit.algorithms import AlgorithmJob
from qiskit.circuit import Parameter, ParameterExpression, QuantumCircuit
from qiskit.primitives import BaseEstimator
from qiskit.primitives.utils import _circuit_key
from qiskit.providers import Options
from qiskit.transpiler.passes import TranslateParameterizedGates

from .qgt_result import QGTResult
from .utils import (DerivativeType, GradientCircuit, _assign_unique_parameters,
_make_gradient_parameter_set,
_make_gradient_parameter_values)


class BaseQGT(ABC):
r"""Base class to computes the Quantum Geometric Tensor(QGT) given a pure,
parameterized quantum state. QGT is defined as:
.. math::
\mathrm{QGT}_{kl}= \langle \partial_k \psi | \partial_l \psi \rangle
- \langle\partial_k \psi | \psi \rangle \langle\psi | \partial_l \psi \rangle.
"""

def __init__(
self,
estimator: BaseEstimator,
phase_fix: bool = True,
derivative_type: DerivativeType = DerivativeType.COMPLEX,
options: Options | None = None,
):
r"""
Args:
estimator: The estimator used to compute the QFI.
phase_fix: Whether to calculate the second term (phase fix) of the QFI, which is
:math:`\langle\partial_k \psi | \psi \rangle \langle\psi | \partial_l \psi \rangle`.
Default to ``True``.
derivative_type: The type of derivative. Can be either ``DerivativeType.REAL``
``DerivativeType.IMAG``, or ``DerivativeType.COMPLEX``. Defaults to
``DerivativeType.REAL``.
- ``DerivativeType.REAL`` computes
.. math::
\mathrm{QFI}_{kl}= 4 \mathrm{Re}[\langle \partial_k \psi | \partial_l \psi \rangle
- \langle\partial_k \psi | \psi \rangle \langle\psi | \partial_l \psi \rangle].
- ``DerivativeType.IMAG`` computes
.. math::
\mathrm{QFI}_{kl}= 4 \mathrm{Im}[\langle \partial_k \psi | \partial_l \psi \rangle
- \langle\partial_k \psi | \psi \rangle \langle\psi | \partial_l \psi \rangle].
- ``DerivativeType.COMPLEX`` computes
.. math::
\mathrm{QFI}_{kl}= 4 [\langle \partial_k \psi | \partial_l \psi \rangle
- \langle\partial_k \psi | \psi \rangle \langle\psi | \partial_l \psi \rangle].
options: Backend runtime options used for circuit execution. The order of priority is:
options in ``run`` method > QFI's default options > primitive's default
setting. Higher priority setting overrides lower priority setting.
"""
self._estimator: BaseEstimator = estimator
self._phase_fix: bool = phase_fix
self._derivative_type: DerivativeType = derivative_type
self._default_options = Options()
if options is not None:
self._default_options.update_options(**options)
self._qgt_circuit_cache = {}
self._gradient_circuit_cache: dict[QuantumCircuit, GradientCircuit] = {}

@property
def derivative_type(self) -> DerivativeType:
"""The derivative type."""
return self._derivative_type

@derivative_type.setter
def derivative_type(self, derivative_type: DerivativeType) -> None:
"""Set the derivative type."""
self._derivative_type = derivative_type

def run(
self,
circuits: Sequence[QuantumCircuit],
parameter_values: Sequence[Sequence[float]],
parameters: Sequence[Sequence[Parameter] | None] | None = None,
**options,
) -> AlgorithmJob:
"""Run the job of the QFIs on the given circuits.
Args:
circuits: The list of quantum circuits to compute the QFIs.
parameter_values: The list of parameter values to be bound to the circuit.
parameters: The sequence of parameters to calculate only the QFIs of
the specified parameters. Each sequence of parameters corresponds to a circuit in
``circuits``. Defaults to None, which means that the QFIs of all parameters in
each circuit are calculated.
options: Primitive backend runtime options used for circuit execution.
The order of priority is: options in ``run`` method > QFI's
default options > primitive's default setting.
Higher priority setting overrides lower priority setting
Returns:
The job object of the QFIs of the expectation values. The i-th result corresponds to
``circuits[i]`` evaluated with parameters bound as ``parameter_values[i]``. The j-th
element of the i-th result corresponds to the QFI of the i-th circuit with respect
to the j-th parameter.
Raises:
ValueError: Invalid arguments are given.
"""
if isinstance(circuits, QuantumCircuit):
# Allow a single circuit to be passed in.
circuits = (circuits,)

if parameters is None:
# If parameters is None, we calculate the gradients of all parameters in each circuit.
parameter_sets = [set(circuit.parameters) for circuit in circuits]
else:
# If parameters is not None, we calculate the gradients of the specified parameters.
# None in parameters means that the gradients of all parameters in the corresponding
# circuit are calculated.
parameter_sets = [
set(parameters_) if parameters_ is not None else set(circuits[i].parameters)
for i, parameters_ in enumerate(parameters)
]
# Validate the arguments.
self._validate_arguments(circuits, parameter_values, parameter_sets)
# The priority of run option is as follows:
# options in ``run`` method > QFI's default options > primitive's default setting.
opts = copy(self._default_options)
opts.update_options(**options)
job = AlgorithmJob(self._run, circuits, parameter_values, parameter_sets, **opts.__dict__)
job.submit()
return job

@abstractmethod
def _run(
self,
circuits: Sequence[QuantumCircuit],
parameter_values: Sequence[Sequence[float]],
parameter_sets: Sequence[Sequence[Parameter] | None],
**options,
) -> QGTResult:
"""Compute the QFIs on the given circuits."""
raise NotImplementedError()

def _preprocess(
self,
circuits: Sequence[QuantumCircuit],
parameter_values: Sequence[Sequence[float]],
parameter_sets: Sequence[set[Parameter]],
supported_gates: Sequence[str],
) -> tuple[Sequence[QuantumCircuit], Sequence[Sequence[float]], Sequence[set[Parameter]]]:
"""Preprocess the gradient. This makes a gradient circuit for each circuit. The gradient
circuit is a transpiled circuit by using the supported gates, and has unique parameters.
``parameter_values`` and ``parameters`` are also updated to match the gradient circuit.
Args:
circuits: The list of quantum circuits to compute the gradients.
parameter_values: The list of parameter values to be bound to the circuit.
parameters: The sequence of parameters to calculate only the gradients of the specified
parameters.
supported_gates: The supported gates used to transpile the circuit.
Returns:
The list of gradient circuits, the list of parameter values, and the list of parameters.
parameter_values and parameters are updated to match the gradient circuit.
"""
translator = TranslateParameterizedGates(supported_gates)
g_circuits, g_parameter_values, g_parameter_sets = [], [], []
for circuit, parameter_value_, parameter_set in zip(
circuits, parameter_values, parameter_sets
):
circuit_key = _circuit_key(circuit)
if circuit_key not in self._gradient_circuit_cache:
unrolled = translator(circuit)
self._gradient_circuit_cache[circuit_key] = _assign_unique_parameters(unrolled)
gradient_circuit = self._gradient_circuit_cache[circuit_key]
g_circuits.append(gradient_circuit.gradient_circuit)
g_parameter_values.append(
_make_gradient_parameter_values(circuit, gradient_circuit, parameter_value_)
)
g_parameter_sets.append(_make_gradient_parameter_set(gradient_circuit, parameter_set))
return g_circuits, g_parameter_values, g_parameter_sets

def _postprocess(
self,
results: QGTResult,
circuits: Sequence[QuantumCircuit],
parameter_values: Sequence[Sequence[float]],
parameter_sets: Sequence[set[Parameter] | None],
) -> QGTResult:
"""Postprocess the gradient. This computes the gradient of the original circuit from the
gradient of the gradient circuit by using the chain rule.
Args:
results: The results of the gradient of the gradient circuits.
circuits: The list of quantum circuits to compute the gradients.
parameter_values: The list of parameter values to be bound to the circuit.
parameters: The sequence of parameters to calculate only the gradients of the specified
parameters.
Returns:
The results of the gradient of the original circuits.
"""
qgts, metadata = [], []
for idx, (circuit, parameter_values_, parameter_set) in enumerate(
zip(circuits, parameter_values, parameter_sets)
):
dtype = complex if self.derivative_type == DerivativeType.COMPLEX else float
qgt = np.zeros((len(parameter_set), len(parameter_set)), dtype=dtype)

gradient_circuit = self._gradient_circuit_cache[_circuit_key(circuit)]
g_parameter_set = _make_gradient_parameter_set(gradient_circuit, parameter_set)
# Make a map from the gradient parameter to the respective index in the gradient.
parameter_indices = [param for param in circuit.parameters if param in parameter_set]
g_parameter_indices = [
param
for param in gradient_circuit.gradient_circuit.parameters
if param in g_parameter_set
]
g_parameter_indices = {param: i for i, param in enumerate(g_parameter_indices)}

rows, cols = np.triu_indices(len(parameter_indices))
for row, col in zip(rows, cols):
for g_parameter1, coeff1 in gradient_circuit.parameter_map[parameter_indices[row]]:
for g_parameter2, coeff2 in gradient_circuit.parameter_map[parameter_indices[col]]:
if isinstance(coeff1, ParameterExpression):
local_map = {
p: parameter_values_[circuit.parameters.data.index(p)]
for p in coeff1.parameters
}
bound_coeff1 = coeff1.bind(local_map)
else:
bound_coeff1 = coeff1
if isinstance(coeff2, ParameterExpression):
local_map = {
p: parameter_values_[circuit.parameters.data.index(p)]
for p in coeff2.parameters
}
bound_coeff2 = coeff2.bind(local_map)
else:
bound_coeff2 = coeff2
qgt[row, col] += (
float(bound_coeff1)
* float(bound_coeff2)
* results.qgts[idx][g_parameter_indices[g_parameter1], g_parameter_indices[g_parameter2]]
)
qgt += np.triu(qgt, k=1).conjugate().T
qgts.append(qgt)
metadata.append([{"parameters": parameter_indices}])
return QGTResult(
qgts=qgts, metadata=metadata, options=results.options
)

def _validate_arguments(
self,
circuits: Sequence[QuantumCircuit],
parameter_values: Sequence[Sequence[float]],
parameter_sets: Sequence[set[Parameter]],
) -> None:
"""Validate the arguments of the ``run`` method.
Args:
circuits: The list of quantum circuits to compute the QFIs.
parameter_values: The list of parameter values to be bound to the circuit.
parameters: The Sequence of Sequence of Parameters to calculate only the QFIs of
the specified parameters. Each Sequence of Parameters corresponds to a circuit in
``circuits``. Defaults to None, which means that the QFIs of all parameters in
each circuit are calculated.
Raises:
ValueError: Invalid arguments are given.
"""
if len(circuits) != len(parameter_values):
raise ValueError(
f"The number of circuits ({len(circuits)}) does not match "
f"the number of parameter value sets ({len(parameter_values)})."
)

if len(circuits) != len(parameter_sets):
raise ValueError(
f"The number of circuits ({len(circuits)}) does not match "
f"the number of the specified parameter sets ({len(parameter_sets)})."
)

for i, (circuit, parameter_value) in enumerate(zip(circuits, parameter_values)):
if not circuit.num_parameters:
raise ValueError(f"The {i}-th circuit is not parameterised.")
if len(parameter_value) != circuit.num_parameters:
raise ValueError(
f"The number of values ({len(parameter_value)}) does not match "
f"the number of parameters ({circuit.num_parameters}) for the {i}-th circuit."
)

@property
@abstractmethod
def options(self) -> Options:
"""Return the union of estimator options setting and QFI default options,
where, if the same field is set in both, the QFI's default options override
the primitive's default setting.
Returns:
The QFI default + estimator options.
"""
pass

def update_default_options(self, **options):
"""Update the QFI's default options setting.
Args:
**options: The fields to update the default options.
"""
self._default_options.update_options(**options)
31 changes: 1 addition & 30 deletions qiskit/algorithms/gradients/lin_comb_estimator_gradient.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@

from .base_estimator_gradient import BaseEstimatorGradient
from .estimator_gradient_result import EstimatorGradientResult
from .utils import DerivativeType, _make_lin_comb_gradient_circuit
from .utils import DerivativeType, _make_lin_comb_gradient_circuit, _make_lin_comb_observables


class LinCombEstimatorGradient(BaseEstimatorGradient):
Expand Down Expand Up @@ -185,32 +185,3 @@ def _run_unique(

opt = self._get_local_options(options)
return EstimatorGradientResult(gradients=gradients, metadata=metadata, options=opt)


def _make_lin_comb_observables(
observable: BaseOperator | PauliSumOp,
derivative_type: DerivativeType,
) -> tuple[BaseOperator | PauliSumOp, BaseOperator | PauliSumOp | None]:
"""Make the observable with an ancillary operator for the linear combination gradient.
Args:
observable: The observable.
derivative_type: The type of derivative. Can be either ``DerivativeType.REAL``
``DerivativeType.IMAG``, or ``DerivativeType.COMPLEX``.
Returns:
The observable with an ancillary operator for the linear combination gradient.
Raises:
ValueError: If the derivative type is not supported.
"""
if derivative_type == DerivativeType.REAL:
return observable.expand(SparsePauliOp.from_list([("Z", 1)])), None
elif derivative_type == DerivativeType.IMAG:
return observable.expand(SparsePauliOp.from_list([("Y", -1)])), None
elif derivative_type == DerivativeType.COMPLEX:
return observable.expand(SparsePauliOp.from_list([("Z", 1)])), observable.expand(
SparsePauliOp.from_list([("Y", -1)])
)
else:
raise ValueError(f"Derivative type {derivative_type} is not supported.")
Loading

0 comments on commit ced1a77

Please sign in to comment.